295
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

APRPG-modified nanoliposome loaded with miR-146a-5p inhibitor suppressed choroidal neovascularization by targeting endothelial cells

, , , , , , , & show all
Pages 354-362 | Received 19 Jul 2020, Accepted 08 Sep 2020, Published online: 02 Oct 2020
 

Abstract

Introduction

To explore the effect and mechanism of APRPG-modified nanoliposomes loaded with miR-146a-5p inhibitor (ANL-miR-146a-5p inhibitor) on endothelial cell proliferation, migration, tube formation, and choroidal neovascularization (CNV) in mice.

Methods

ANL-miR-146a-5p inhibitors were generated by thin film hydration; in vitro, endothelial cell uptake experiment was used to detect the targeting effect of ANL-miR-146a-5p inhibitor; endothelial cells proliferation, migration, and tube formation were detected, respectively, by CCK8 assay, scratch assay, and Matrigel tube formation assay. In vivo, the mice CNV models were established by 810 nm laser photocoagulation. Mice choroidal flatmounts were performed to detect the volume of CNV after intravitreal injection of L-miR-146a-5p inhibitor, ANL-miR-146a-5p inhibitor, or normal saline; the vascular endothelial growth factor (VEGF) expression of mice choroidal tissue was detected by ELISA; HE section and electrophysiology (ERG) were performed to check the toxicity of ANL-miR-146a-5p inhibitor on mice retina.

Results

ANL are targeted to endothelial cells and are more targeted in inflammatory environment. At the same concentration, ANL-miR-146a-5p inhibitor’s ability to inhibit endothelial cell proliferation, migration, tube formation, CNV formation, and VEGF expression is better than L-miR-146a-5p inhibitor (p < 0.05); ANL-miR-146a-5p inhibitor had no toxicity on the structure of mouse retina; ANL-miR-146a-5p inhibitor had no toxicity on the a-wave and b-wave amplitudes and b-wave implicit times (p > 0.05).

Conclusions

ANL-miR-146a-5p inhibitor can more effectively down-regulate the expression level of VEGF through its targeting to endothelial cells, thereby more effectively inhibiting endothelial cell proliferation, migration, tube formation, and mice CNV formation.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by grants from National Natural Science Foundation of China (81670866, 81600741), Basic Research Plan of Guangzhou Science and Technology Plan Project (202002030380), Fundamental Research Funds for the Central Universities (Sun Yat-sen University, 19ykpy152), the Natural Science Foundation of Guangdong Province (2020A1515011099), and the Science and Technology Planning Project of Guangdong Province (2017A020215038).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,568.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.