683
Views
110
CrossRef citations to date
0
Altmetric
Original Articles

Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes

&
Pages 269-284 | Accepted 27 Aug 2002, Published online: 31 Jan 2017
 

Abstract

The phylogenetic relationships of 51 isolates representing 27 species of Phytophthora were assessed by sequence alignment of 568 bp of the mitochondrially encoded cytochrome oxidase II gene. A total of 1299 bp of the cytochrome oxidase I gene also were examined for a subset of 13 species. The cox II gene trees constructed by a heuristic search, based on maximum parsimony for a bootstrap 50% majority-rule consensus tree, revealed 18 species grouping into seven clades and nine species unaffiliated with a specific clade. The phylogenetic relationships among species observed on cox II gene trees did not exhibit consistent similarities in groupings for morphology, pathogenicity, host range or temperature optima. The topology of cox I gene trees, constructed by a heuristic search based on maximum parsimony for a bootstrap 50% majority-rule consensus tree for 13 species of Phytophthora, revealed 10 species grouping into three clades and three species unaffiliated with a specific clade. The groupings in general agreed with what was observed in the cox II tree. Species relationships observed for the cox II gene tree were in agreement with those based on ITS regions, with several notable exceptions. Some of these differences were noted in species in which the same isolates were used for both ITS and cox II analysis, suggesting either a differential rate of evolutionary divergence for these two regions or incorrect assumptions about alignment of ITS sequences. Analysis of combined data sets of ITS and cox II sequences generated a tree that did not differ substantially from analysis of ITS data alone, however, the results of a partition homogeneity test suggest that combining data sets may not be valid.

The DNA sequencing was done by the DNA Sequencing Laboratory of the Interdisciplinary Center for Biotechnological Research of the University of Florida at Gainesville, Gainesville, Florida; the efforts of Savita Shanker and Ernesto Almira are gratefully acknowledged. Comments on this manuscript before submission by Dave Mitchell, Reid Frederick and Steve Rehner are gratefully acknowledged. Mention of trade names or commercial products in this manuscript is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.