38
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Synergism between blue light and root exudate compounds and evidence for a second messenger in the hyphal branching response of Gigaspora gigantea

&
Pages 948-954 | Accepted 04 Feb 2004, Published online: 30 Jan 2017
 

Abstract

Light and chemical components of the host root exudate can induce hyphal growth and branching of arbuscular mycorrhizal fungi. Compounds that induce the same morphogenetic or biochemical response as light are referred to as photo-mimetic compounds (PCs). This is the first report of a synergistic response by Gigaspora gigantea, an arbuscular mycorrhizal fungus, to blue light and naturally occurring photomimetic compounds isolated from the exudate of host roots. The blue light treatment and exposure to photomimetic compounds were effective whether applied sequentially or simultaneously. The number of hyphal branches induced by blue light and photomimetic compounds together was greater than the sum of the branches generated by each separate treatment, and the synergism was greatest at the higher levels or orders of branches. The fact that blue light and PCs, individually, triggered the same hyphal branching response and when given together, they produced a synergistic response, indicated the activation of a second messenger in the induced-branching process. Delaying the application of PCs, after the initial light exposure, showed the second messenger was stable up to 3 h.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.