159
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Selective induction, purification and characterization of a laccase isozyme from the basidiomycete Trametes sp. AH28-2

, , , , , , & show all
Pages 26-35 | Accepted 31 May 2003, Published online: 30 Jan 2017
 

Abstract

The white-rot fungus Trametes sp. AH28-2 can synthesize extracellular laccase by induction in cellobiose-based liquid culture medium. Both yields and composition of laccase isozymes, produced by Trametes sp. AH28-2, would be quite different with induction by different small-molecule aromatic compounds, o-toluidine, guaiacol and 3,5-dihydroxytoluene, which affected microbial growth and the synthesis of laccase isozymes differentially. Higher concentrations of the three inducers could considerably increase laccase isozymes yields but not change the laccase composition. Coculturing of Trametes sp. AH28-2 with either Aspergillus oryzae or Gloeophyllum trabeum showed a few effects on laccase production. Laccase isozyme, laccase B, was selectively induced by 3,5-dihydroxytoluene and purified to homogeneity by two-step chromatography. Purified laccase B appeared as blue, with a broad peak at about 600 nm and a shoulder peak at about 330 nm. The ratio of absorbance at 280 nm to that at 600 nm was 21. Every molecule of laccase B had approximately four copper atoms. Molecular mass of laccase B was estimated to be 74 kDa on SDS-PAGE, 72 kDa by FPLC and was determined to be 71 454 Da by mass spectrum. After being treated with N-glycosidase F, laccase B lost 25% of its molecular mass. The isoelectric point of laccase B was 4.0. Its optimal pH and temperature for oxidizing guaiacol were respectively 4.7 and 45 C. The half-life of the enzyme at 60 C was 14.0 min. The enzyme showed a good stability in a range of pH value of 3.5–7.5. The Km values of the enzyme toward substrates syringaldazine, guaiacol, ABTS, and DMOP were respectively 28.0, 1249.0, 177.0 and 109.8 μM. The corresponding Vmax are 504.0, 1910.0, 117.4 and 159.0 μM min−1 mg−1. In addition, activity of laccase B was inhibited strongly by sodium azide and cyanide, mildly by SDS and trifluoroacetic acid, but only weakly by dimethyl sulfoxide.

This work was supported by Grant No. 30370045 from National Natural Science Foundation of China and by Grant Nos. 04043048, 0103018 from Natural Science Foundation of Anhui Province. We thank Drs. Joseph Jomon and Jun Wang for valuable discussions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.