785
Views
94
CrossRef citations to date
0
Altmetric
Original Articles

Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade

, , , , &
Pages 926-936 | Accepted 23 Oct 2006, Published online: 23 Jan 2017
 

Abstract

The hymenochaetoid clade is dominated by wood-decaying species previously classified in the artificial families Corticiaceae, Polyporaceae and Stereaceae. The majority of these species cause a white rot. The polypore Bridgeoporus and several corticioid species with inconspicuous basidiomata live in association with brown-rotted wood, but their nutritional strategy is not known. Mycorrhizal habit is reported for Coltricia perennis but needs confirmation. A surprising element in the hymenochaetoid clade is a group of small white to brightly pigmented agarics earlier classified in Omphalina. They form a subclade together with some similarly colored stipitate stereoid and corticioid species. Several are associated with living mosses or one-celled green algae. Hyphoderma pratermissum and some related corticioid species have specialized organs for trapping and killing nematodes as a source of nitrogen. There are no unequivocal morphological synapomorphies known for the hymenochaetoid clade. However almost all species examined ultrastructurally have dolipore septa with continuous parenthesomes while perforate parenthesomes is the normal condition for other homobasidiomycete clades. The agaricoid Hymenochaetales have not been examined. Within Hymenochaetales the Hymenochaetaceae forms a distinct clade but unfortunately all morphological characters supporting Hymenochaetaceae also are found in species outside the clade. Other subclades recovered by the molecular phylogenetic analyses are less uniform, and the overall resolution within the nuclear LSU tree presented here is still unsatisfactory.

We thank Ellen Larsson and Henrik Nilsson for great help with lab work and phylogenetic analyses respectively. K-H Larsson was financially supported by the Swedish Species Information Centre, Swedish Agricultural University, Uppsala. We also acknowledge support from NSF 0090301, Research Coordination Network: A Phylogeny for Kingdom Fungi to M. Blackwell, J.W. Spatafora and J.W. Taylor.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.