129
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

High mobility group (HMG-box) genes in the honeybee fungal pathogen Ascosphaera apis

, , , &
Pages 553-561 | Accepted 17 May 2007, Published online: 23 Jan 2017
 

Abstract

The genome of the honeybee fungal pathogen Ascosphaera apis (Maassen) encodes three putative high mobility group (HMG-box) transcription factors. The predicted proteins (MAT1-2, STE11 and HTF), each of which contain a single strongly conserved HMG-box, exhibit high similarity to mating type proteins and STE11-like transcription factors previously identified in other ascomycete fungi, some of them important plant and human pathogens. In this study we characterized the A. apis HMG-box containing genes and analyzed the structure of the mating type locus (MAT1-2) and its flanking regions. The MAT1-2 locus contains a single gene encoding a protein with an HMG-box. We also have determined the transcriptional patterns of all three HMG-box containing genes in both mating type idiomorphs and discuss a potential role of these transcription factors in A. apis development and reproduction. A multiplex PCR method with primers amplifying mat1-2-1 and Ste11 gene fragments is described. This new method allows for identification of a single mating type idiomorph and might become an essential tool for applied and basic research of chalkbrood disease in honeybees.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.