752
Views
33
CrossRef citations to date
0
Altmetric
REVIEWS

Effect of Physicochemical Properties of Biodegradable Polymers on Nano Drug Delivery

, , , &
Pages 546-567 | Received 13 May 2013, Accepted 16 Jun 2013, Published online: 27 Sep 2013
 

Abstract

This review article is to explore the utilization of biodegradable polymers and their associated physicochemical properties in nano drug delivery (NDD). The main hub of the pharma industry is involved in the development of innovative biodegradable and biocompatible polymers which have targeting ability and a predictable release profile of an incorporated active pharmaceutical ingredient (API) or therapeutic agents. Moreover, the pharmaceutical and biological efficiency of the nano drug delivery system varies with the inherent properties of the polymer. The foremost, important physicochemical properties of biodegradable polymers include molecular weight, hydrophobicity, surface charge, crystallinity, composition of the co-polymer, glass transition temperature, and the nature of coating material. Nevertheless, these properties can be manipulated to modify the kinetics of the delivery system by selecting an optimum polymer (based on physicochemical properties) for a specific purpose.

Acknowledgment

The authors wish to thank the Management of PDM Religious and Educational Association (PDMREA) and are also grateful to the PDM College of Pharmacy, Sarai Aurangabad, Bahadurgarh, Haryana, India for support to carry out this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.