2,023
Views
37
CrossRef citations to date
0
Altmetric
Reviews

Interlaminar Fracture Toughness Characterization of Laminated Composites: A Review

&
Pages 542-593 | Received 15 Mar 2019, Accepted 02 Oct 2019, Published online: 30 Oct 2019
 

Abstract

Interlaminar fracture toughness had been the subject of great interest for several years and is still interesting to the research community. In this article, a comprehensive analysis of fracture toughness in FRP laminates is presented. Primarily, toughness studies are undertaken on glass and carbon fiber reinforced composites under mode-I and mode-II loading conditions. The fracture behavior and its failure pattern depend on a number of parameters: fiber sizing/coating, matrix modification, insert film, fiber volume fraction, stacking sequence, specimen geometry, loading rate and temperature change. In fact, a state-of-the-art process enables increasing fracture resistance with “matrix toughening by carbon nanotubes (CNT) inclusion”. It enables production of materials having ultra-high strength and low weight. The present study has highlighted the available techniques of CNT incorporation: mechanical mixing, grafting and interleaving. Other aspects, such as the dispersion level, matrix viscosity, fiber surface roughness, loading weight %, bonding strength with epoxy, height and density of grown CNT, energy absorption mechanism during delamination, etc., have been examined as well. Although a clear correlation of all these parameters with fracture toughness is hard to establish, there is growing understanding of the surface-grown CNTs and interleaving processes as they ensure significant increase in fracture toughness.

Acknowledgements

Ruchir Shrivastava gratefully acknowledges the Department of Mechanical Engineering, Indian Institute of Technology (ISM) Dhanbad and The Ministry of Human Resource Development, Government of India to grant him a Ph.D. scholarship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.