594
Views
35
CrossRef citations to date
0
Altmetric
Research papers

Estimation of dimension and time variation of local scour at short abutment

, &
Pages 121-135 | Received 15 Jul 2012, Accepted 18 Jan 2013, Published online: 21 Mar 2013
 

Abstract

Accurate prediction of the local scour at abutments is an important criterion to design a safe depth for the bridge foundation. In this paper, the dimension and variation of local scour with time at a vertical-wall abutment were investigated experimentally under clear-water conditions. The multiple linear regression (MLR), gene expression programming (GEP) and artificial neural networks (ANNs), feed forward back propagation and radial basis function were used to predict the time variation of scour depth at a short abutment. Results indicated that the dimension of the scour hole in the x-direction ranged from 3L to 5L upstream and downstream of the abutment, respectively, and also 4L in the y-direction. Statistical analysis showed that, although the ANNs technique produced better results (R 2 = 0.997, RMSE = 0.0113 and MAE = 0.0071) in comparison with the GEP (R 2 = 0.959, RMSE = 0.068 and MAE = 0.044) and MLR techniques (R 2 = 0.958, RMSE = 0.059 and MAE = 0.041), both GEP and MLR are more practical methods. Finally, sensitivity analysis indicated that the local scour was greatly affected by the three studied parameters in the following order, time ratio (t/t e) > abutment length ratio (L/y) > velocity ratio (U/U c).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 144.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.