252
Views
7
CrossRef citations to date
0
Altmetric
Special Issue Articles

Uncertainty analysis of settling, consolidation and resuspension of cohesive sediments in the Upper Rhine

ORCID Icon, &
Pages 401-411 | Received 01 Aug 2016, Accepted 31 Aug 2017, Published online: 27 Sep 2017
 

ABSTRACT

Understanding the dynamics of settling, consolidation and remobilization of cohesive and contaminated sediment is an important requirement to assess the risk of erosion and to manage mud-dominated ecosystems. Here, we present data on the erodibility of cohesive sediments from the impounded Upper Rhine River and develop a modelling concept to understand the suspended sediment dynamics along the impounded Upper Rhine. The conceptual framework includes 10 reservoirs of the Upper Rhine between Basel and Iffezheim, which serve as long-term sinks of cohesive sediment. Each reservoir is represented by a 1D sediment budget model, which is coupled to its upstream and downstream neighbour. In this paper, we focus on the uncertainty associated with the measurement of the erodibility of cohesive sediments and on the implications to model the risk of erosion. The statistical analysis showed a large uncertainty of the estimated critical shear stresses and erosion rates. Root mean square errors are in the order of 50% and 100% of the average critical shear stresses and average erosion rates, respectively. Preliminary model results are in good agreement with bed changes of the Iffezheim reservoir, which were measured using approximately quarterly echo-soundings of the reservoir. The probabilistic approach that is based on Monte-Carlo simulations allows assessing the uncertainty related to our limited knowledge (i) of the dynamics of contaminated sediments and (ii) of the environmental conditions in the reservoir that control the risk of erosion of contaminated sediments.

Acknowledgements

All field data are provided by the German Federal Institute of Hydrology (BfG), the Federal Waterways and Shipping Authority (Office Freiburg), and by the Institute for Modelling Hydraulic and Environmental Systems of the University of Stuttgart. The study is supported in the framework of the project ‘Estimating long-term evolution of fine sediment budget in the Upper Rhine’. The authors appreciate the support by BfG.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 144.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.