1,119
Views
90
CrossRef citations to date
0
Altmetric
Original Articles

Burst detection using hydraulic data from water distribution systems with artificial neural networks

&
Pages 21-31 | Published online: 16 Feb 2007
 

Abstract

This paper presents research into the application of artificial neural networks (ANNs) for analysis of data from sensors measuring hydraulic parameters (flow and pressure) of the water flow in treated water distribution systems. Two neural architectures (static and time delay) are applied for time series pattern classification from the perspective of detecting leakage. Results are presented using data from an experimental site in a distribution system of a UK water company in which bursts were simulated by hydrant flushing. Field trials have shown how ANNs can be used effectively for a leakage detection task. Both static and time delay ANNs learned patterns of leaks/bursts. The time delay neural network showed improved performance over the static network. It is concluded that the effectiveness of an ANN in discovering relationships within the data is dependent upon two key factors: availability of sufficient exemplars and data quality.

Acknowledgements

The authors wish to acknowledge the support given for this research by the Engineering and Physical Sciences Research Council (UK) under its Water Infrastructure and Treatment Engineering (WITE) Initiative. Acknowledgement is also given to the LAPS team at Bradford University, especially the late Prof. Imad Torsun.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 239.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.