423
Views
43
CrossRef citations to date
0
Altmetric
Research articles

Pipe hydraulic resistance correction in WDN analysis

&
Pages 39-52 | Received 04 Apr 2008, Accepted 06 Aug 2008, Published online: 07 Apr 2009
 

Abstract

The analysis of a looped water distribution network, operating under pressure and in steady flow conditions, can be accomplished once the topology of the network, the geometry of the pipes, the water demands at the nodes and the head value of at least one node are known. In a water distribution network (WDN), water demands are assigned to the nodes, although in reality they are distributed along the pipes converging at such nodes. This classic assumption represents the total demand along a pipe as two lumped withdrawals at its terminal nodes. This paper demonstrates that the above approximation is wrong because it generates head loss errors which may be significant when network analysis is performed for calibration, system design, real-time operations, rehabilitation strategies, optimal operation studies, reliability analyses, etc. Therefore, an extension of the global gradient algorithm (GGA) for network analysis is proposed which entails a modified GGA permitting the effective introduction of the lumped nodal demands, and without forfeiting a correct physical representation of head losses, by means of a pipe hydraulic resistance correction.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 239.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.