1,050
Views
43
CrossRef citations to date
0
Altmetric
Research articles

Assessing the combined benefits of water recycling technologies by modelling the total urban water cycle

&
Pages 1-10 | Received 29 Mar 2011, Accepted 21 Sep 2011, Published online: 02 Dec 2011
 

Abstract

This study investigates the potential benefits of new technologies, modern appliances, and innovative techniques that help to improve the performance of the urban water cycle. Urbanisation is a major source of additional pressures (both qualitative and quantitative) on the environment. For example abstractions to cover the increased demands for water supply or alterations of the topographic and geomorphologic properties of the land cover result in considerable changes to the dynamics of the hydrosystem (change of average and maximum values of flows). Sustainable, water-aware technologies, like SUstainable Drainage Systems (SUDS) and rainwater harvesting schemes, can be implemented to reduce these adverse effects. These technologies introduce interactions between the components of the urban water cycle. Rainwater harvesting for example, apart from the potable water demand reduction, may have a significant influence on the generated runoff. Consequently, an integrated modelling of the urban water cycle is necessary for the simulation of the water-aware technologies and the identification of their combined benefits. In this study, two hypothetical developments implement rainwater harvesting schemes and SUDS and are simulated using the Urban Water Optioneering Tool (UWOT), which is capable of using rainfall time series of arbitrary time steps. The two hypothetical developments were studied to investigate the contribution of the water-aware technologies to the minimisation of the environmental pressures. Significantly different urban density was assigned to these developments to highlight the influence of urban density on the efficiency and reliability of the water-aware technologies. The results indicate that: (a) water-saving schemes like rainwater harvesting and greywater treatment can reduce significantly the pressures of new developments (e.g., reduction of potable water demand by 27%); (b) the reliability of the water-aware technologies decreases with urban density; and (c) if localised rainwater harvesting is implemented then the efficiency of the water appliances influences considerably the generated runoff.

Acknowledgements

This research was supported by a Basic Research Grant (PEBE2010) by the National Technical University of Athens.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 239.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.