486
Views
11
CrossRef citations to date
0
Altmetric
Research articles

Hydrodynamic behaviour of a new permeable pavement material under high rainfall conditions

, , , , , & show all
Pages 687-696 | Received 22 Dec 2013, Accepted 23 Feb 2015, Published online: 07 Apr 2015
 

Abstract

Permeable pavements are among the most effective alternative solutions for sustainable stormwater management. They decrease impervious surfaces in urban areas, reduce the risk of flooding under high rainfall conditions and protect the natural environment against stormwater pollution. In a view to ensuring sustainable stormwater management, a new eco-material has been designed for producing permeable pavements. This material is a mixture of construction wastes (crushed concrete) and organic matter (compost). The crushed concrete is the structural support and the compost is used for retention and the biological treatment of stormwater pollution. The purpose of the research work presented in this paper was to evaluate the hydrodynamic behaviour of a new permeable pavement material under high rainfall conditions. The experimental approach adopted for this research study is a temporal moment analysis. Therefore, for the experimental study, we simulated high rainfall with a return period of 10 years (Torreilles in 2001, France). The rainfall data were provided by Meteo France. The rainfall was maintained at an intensity of 126 mm/h, corresponding to a flow rate of 16 l/h at laboratory apparatus scale. Then, the flow rate was increased three times, to 25 l/h, 50 l/h and finally 100 l/h to subject the material to extreme conditions.

Acknowledgement

We would like to thank the Meteo France for their rainfall data which enabled us to carry out this research work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The work described in this paper was funded by the Alsace Region. It is a collaborative project acknowledged as successful and which provides a large number of scientific openings, particularly in the sectors of ecology and sustainable development.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 239.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.