578
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of SWMM evaporation and discharge to in-field observations from lined permeable pavements

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 491-502 | Received 04 Nov 2019, Accepted 27 May 2020, Published online: 01 Jul 2020
 

ABSTRACT

Limited documentation exists regarding parameterization of SWMM’s permeable pavement module and whether the output is realistic, particularly for long-term simulations. In this paper, we evaluated SWMM’s ability to replicate discharge and evaporation from three lined permeable pavement stalls. An assessment of parameter sensitivity identified the permeable pavement module’s input parameters with the highest relative sensitivity. Agreement between observations over a 1-year period and output from the calibrated model was inconsistent for 18 modelled rainfall events. While event volumes and shapes were matched relatively well for two concrete paver stalls for simple single-peak events, more complex multi-peak events showed poor agreement for all stalls. The porous asphalt stall was modelled least satisfactorily, due to its retention capacity that cannot be represented in the model. Based on the findings of this study, an evaporation coefficient (between 0.2 and 0.9), should be applied for long-term simulations of permeable pavement for best results.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 239.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.