137
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Multi-period consequence management of contaminations in water distribution networks: application of regret-based optimization model

ORCID Icon, , &
Pages 100-111 | Received 15 Aug 2022, Accepted 25 Nov 2022, Published online: 13 Dec 2022
 

ABSTRACT

This study presents a Regret-based optimization model for multi-period consequence management of contaminations entering the WDNs considering the pollutants loads’ entry uncertainties. For this purpose, first, the EPANET software is utilized as a water quality-quantity simulation modeling tool. Then, an optimization model based on a genetic algorithm using the primary objective functions of minimizing the return time of the contaminated WDNs to the normal mode, the amount of pollution, and the number of polluted nodes. Besides, the pollutant load-related uncertainties are included in the presented simulation-optimization model by minimizing the maximum Regret (MMR) and the total Regret (MTR) in two steady and dynamic status for all three mentioned objective functions. Using these nine objective functions, three management instruments are utilized: quick closing valves, discharging hydrants, and boosting pumps. The results show that the proposed model can effectively prevent harmful pollution by offering effective management strategies, mainly in dynamic status scenarios.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed https://doi.org/10.1080/1573062X.2022.2154681

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 239.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.