Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 11, 2015 - Issue 3
442
Views
23
CrossRef citations to date
0
Altmetric
Articles

Capital renewal optimisation for large-scale infrastructure networks: genetic algorithms versus advanced mathematical tools

&
Pages 253-262 | Received 06 Feb 2013, Accepted 10 Oct 2013, Published online: 12 Feb 2014
 

Abstract

Civil infrastructure assets require continuous renewal (repair, rehabilitation or replacement) actions to modernise the inventory and sustain its operability. Allocating limited renewal funds among numerous asset components, however, represents a complex optimisation problem. Earlier efforts using genetic algorithms (GAs) could optimise small size problems yet exhibiting steep degradation in solution quality as problem size increases. Even by applying sophisticated mechanisms such as ‘segmentation’ to improve the performance of GAs, large processing time hinders the practicality of the algorithm for large-scale problems. This article, therefore, aims at improving both processing speed and solution quality for very large-scale problems (up to 50,000 assets). The article develops optimisation models using an advanced modelling tool (GAMS/CPLEX), and compares its results with GAs on three different model formulations. Both approaches proved to be beneficial, yet the advanced mathematical approach showed superior performance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 298.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.