1,064
Views
49
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation of the spatial variability of the steel weight loss and corrosion cracking of reinforced concrete members: novel X-ray and digital image processing techniques

, , &
Pages 118-134 | Received 24 Jan 2016, Accepted 29 May 2016, Published online: 01 Jul 2016
 

Abstract

The material properties of concrete structures and their structural dimensions are known to be random due to the spatial variability associated with workmanship and various other factors. This randomness produces spatially variable corrosion damages, such as steel weight loss and corrosion cracks. The structural capacity of reinforced concrete (RC) members strongly depends on the local conditions of their reinforcements. Modelling the spatial variability of steel corrosion is important, but steel corrosion in RC members can only be observed after severely damaging the concrete members. To understand the steel corrosion growth process and the change in the spatial variability of steel corrosion with time, continuous monitoring is necessary. In this study, X-ray photography is applied to observe steel corrosion in RC beams. The steel weight loss is estimated by the digital image processing of the X-ray photograms. The non-uniform distribution of steel weight loss along rebars inside RC beams determined using X-ray radiography and its correlation with longitudinal crack widths are experimentally investigated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 298.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.