Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Latest Articles
135
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Photoelectric sensors for wireless monitoring of bridge scour – laboratory investigation and field validation

, &
Received 19 Oct 2022, Accepted 19 Jun 2023, Published online: 24 Sep 2023
 

Abstract

Scour, or the erosion of bed material is a major cause of bridge failure across the world. Monitoring scour levels at bridge foundations reduces the risk of failure through timely condition-based maintenance. This paper evaluates the use of photoelectric sensors for scour detection through laboratory studies and subsequent field investigation. Two types of photoelectric sensors, namely diffusive-reflective and through-beam, were independently investigated. The sensors were installed at six distinct depths on a simulated bridge pier in a laboratory flume. Scour resulting from hydrodynamic action triggered the sensors at different levels, enabling scour depth detection. An inverse response from the sensors detected scour refill. Following successful laboratory tests, a photoelectric scour-sensing prototype was installed in a small creek in August 2019 which continued to monitor scour until April 2022. The prototype response confirmed laboratory results and continues to perform well under various field conditions such as rain, debris, and snow. The very low-cost system required minimal power and bandwidth, and the sensing component was robust to flow parameters. Long-term field studies are required to evaluate their susceptibility to biofouling and develop biofouling countermeasures.

Acknowledgments

The authors acknowledge the support of Dr. Patrick Lewis, the director of the UBC Botanical Garden for his support in field trials conducted in this study. The authors are thankful for the continued financial support from the Canada-India Research Centre of Excellence (IC-IMPACTS).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 298.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.