Publication Cover
Bridge Structures
Assessment, Design and Construction
Volume 3, 2007 - Issue 2
61
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of creep effects on the time-dependent deflections and stresses in prestressed concrete bridges

, &
Pages 119-132 | Received 06 Jun 2007, Published online: 20 Jul 2007
 

Abstract

In this paper, time-dependent deflections, stresses and internal forces in prestressed concrete box-girder bridges due to creep of concrete are investigated. Simple equations, correlated with a step-by-step numerical simulation analysis, are developed to calculate long-term behavior of segmentally erected prestressed concrete box-girder bridges built by the balanced-cantilever method. Three-dimensional finite-element models of the mentioned bridges, including effects of the load history, material nonlinearity, creep and aging of concrete, were developed using ABAQUS software. The three-dimensional shell elements are used for modeling box-girder walls, while Rebar elements are used for modeling prestressing tendons. The step-by-step procedure allows the simulation of the construction stages, effects of time-dependent deformations of materials and changes in the bridges' structural system. Different examples of bridges, built by the balanced-cantilever method, are studied over a 30-year duration. Practical equations are modified to calculate time-dependent deflections and redistribution of internal stresses and forces in bridges constructed by the balanced-cantilever method, and good agreements between the results of the proposed method and numerical analysis are found. Significant time-dependent effects on bridge deflections and redistribution of internal forces and stresses are observed.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.