185
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Mechanistic Changes During Phytoremediation of Perchlorate Under Different Root-Zone Conditions

, &
Pages 63-83 | Published online: 10 Aug 2010
 

ABSTRACT

Two types of hydroponic bioreactors were used to investigate the mechanisnistic changes during phytoremediation of perchlorate under different root-zone conditions. The bioreactors included: (1) an aerobic ebb-and-flow system planted with six willow trees, and (2) individual willow trees grown in sealed root-zone bioreactors. Rhizosphere probes were used to monitor for the first time during phytoremediation of perchlorate, diurnal swings in oxidation-reduction potential (EH), dissolved oxygen (DO), and pH. Radiolabeled (36Cl-labeled) perchlorate was used as a tracer in a subset of the sealed bioreactor experiments to quantify the contribution of phytodegradation and rhizodegradation mechanisms. Rhizodegradation accounted for the removal of 96.1 ± 4.5% (± 95% CI) of the initial perchlorate dose in experiments conducted in sealed hydroponic bioreactors with low DO and little or no nitrate N. Meanwhile, the contribution of rhizodegradation decreased to 76 ± 14% (±95% CI) when nitrate (a competing terminal electron acceptor) was provided as the nitrogen source. Slower rates of phytoremediation by uptake and phytodegradation were observed under high nitrate concentrations and aerobic conditions, which allowed perchlorate to persist in solution and resulted in a higher fraction uptake by the plant. Specifically, the rate of removal of perchlorate from bulk solution ranged from 5.4 ± 0.54 to 37.1 ± 2.25 mg/L/d (±SE) in the absence of nitrate to 1.78 ± 0.27 to 0.46 ± 0.02 mg/L/d (±SE) at high nitrate concentration. The results of this study indicate that the root-zone environment of plants can be manipulated to optimize rhizodegradation and to minimize undesirable processes such as uptake, temporal phytoaccumulation, and slow phytodegradation during phytoremediation of perchlorate. Rhizodegradation is desired because contaminants resident in plant tissue may remain an ecological risk until completely phytodegraded.

ACKNOWLEDGEMENTS

The authors wish to thank the United States Air Force Aeronautical Systems Center Environmental Management Directorate for financial support of this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.