618
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Estimation-type results on the k-fractional Simpson-type integral inequalities and applications

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 932-940 | Received 23 Mar 2019, Accepted 29 Aug 2019, Published online: 09 Sep 2019

ABSTRACT

We establish a Simpson-type identity of multiparameter and certain Simpson-type inequalities via k-fractional integrals. Worth mentioning, the obtained inequalities in this article generalize some results presented by Set et al. [Simpson type integral inequalities for convex functions via Riemann-Liouville integrals. Filomat. 2017;31(14):4415–4420] and Sarikaya et al. [On new inequalities of Simpson's type for s-convex functions. Comput Math Appl. 2010;60:2191–2199]. As applications, we also provide several inequalities for f-divergence measures and probability density functions. We expect that this study will be result in the new k-fractional integration explorations for Simpson-type inequalities.

2010 AMS SUBJECT CLASSIFICATIONS:

1. Introduction

The following inequality is named the Simpson type integral inequality: (1) |16h(τ1)+4hτ1+τ22+h(τ2)1τ2τ1τ1τ2h(t)dt|12880h(4)(τ2τ1)4,(1) where h:[τ1,τ2]R is a four-order differentiable mapping on (τ1,τ2) and h(4)=supt(τ1,τ2)|h(4)(t)|<.

Considering the Simpson type inequalities, many researches generalized and extended them. For example, Hsu et al. [Citation1], Du et al. [Citation2], Noor et al. [Citation3], İşcan et al. [Citation4] and Tunç et al. [Citation5] obtained some Simpson type inequalities for differentiable mappings which are convex, extended (s,m)-convex, geometrically relative convex, p-quasi-convex mappings and h-convex, respectively. Further results involving the Simpson type inequality in question with applications to Riemann–Liouville fractional integrals have been explored out by some scholars, including Set et al. [Citation6] and Hwang et al. [Citation7] in the study of the Simpson type inequalities using convexity, as well as İşcan [Citation8] in the study of the Simpson type inequalities using s-convexity. More details corresponding to the Simpson type inequality and its extension, we refer to some articles by Hussain and Qaisar [Citation9], Matłoka [Citation10], Qaisar et al. [Citation11], Ujević [Citation12] and Ul-Haq et al. [Citation13].

Let us consider an m-invex set A. A set ARn is named m-invex set with respect to the mapping η:A×A×(0,1]Rn for certain fixed m(0,1], if mθ1+tη(θ2,θ1,m) holds, for all θ1,θ2A and t[0,1]. A mapping h:AR is called generalized (α,m)-preinvex respecting η, if the following inequality (2) h(mθ1+tη(θ2,θ1,m))m(1tα)h(θ1)+tαh(θ2)(2) holds, for every θ1,θ2A and t[0,1].

Fractional calculus, as a very useful tool, shows its significance to implement differentiation and integration of real or complex number orders. This topic has attracted much attention from researchers who focus on the study of partial differential equations during the last few decades. For recent results related to this subject, we refer to some studies by Sohail et al. [Citation14], Hameed et al. [Citation15], and Khan et al. [Citation16,Citation17]. Among a lot of the fractional integral operators growed, the Riemann–Liouville fractional integral operator has been extensively studied, because of applications in many fields of sciences, such as differential equations, differential geometry and physics science. An important generalization of Riemann–Liouville fractional integrals was considered by Mubeen et al. in [Citation18] which is named k-fractional integral operators.

Definition 1.1

Let hL1([τ1,τ2]), the k-fractional integrals kJτ1+μh(x) and kJτ2μh(x) of order μ>0 are defined by (3) kJτ1+μh(x)=1kΓk(μ)τ1x(xλ)μk1h(λ)dλ,(0τ1<x<τ2)(3) and (4) kJτ2μh(x)=1kΓk(μ)xτ2(λx)μk1h(λ)dλ,(0τ1<x<τ2),(4) respectively, where k>0 and Γk(μ) is the k-gamma function, i.e. Γk(μ)=0λμ1eλkkdλ with the properties Γk(μ+k)=μΓk(μ). Note that kJτ1+0h(x)=kJτ20h(x)=h(x).

Some recent results pertaining k-fractional integrals can be found in [Citation19–21].

Here, via k-fractional integral operators, we obtain some estimation-type results of Simpson-type inequality in terms of a multi-parameter identity. We also consider the established inequalities applying to f-divergence measures and probability density functions.

2. Main results

Throughout this article, let N be the set of all positive integers, and let AR be an open m-invex subset respecting η:A×A×(0,1]R{0} for m(0,1], τ1,τ2A, τ1<τ2. Suppose that h:AR is differentiable satisfying that h is integrable on [mτ1,mτ1+η(τ2,τ1,m)]. We also utilize the following notation: (5) Δh,η(μ,k;n,m):=16h(mτ1)+hmτ1+η(τ2,τ1,m)+2hmτ1+1n+1η(τ2,τ1,m)+2hmτ1+nn+1η(τ2,τ1,m)Γk(μ+k)(n+1)μk6ημk(τ2,τ1,m)kJ(mτ1)+μh×mτ1+1n+1η(τ2,τ1,m)+kJ(mτ1+η(τ2,τ1,m))μhmτ1+nn+1η(τ2,τ1,m)Γk(μ+k)(n+1)μk3ημk(τ2,τ1,m)×kJ(mτ1+nn+1η(τ2,τ1,m))+μhmτ1+η(τ2,τ1,m)+kJ(mτ1+1n+1η(τ2,τ1,m))μh(mτ1).(5) To prove main results, we give the following lemma.

Lemma 2.1

One has the following equality (6) Δh,η(μ,k;n,m)=η(τ2,τ1,m)2(n+1)012(1t)μktμk3h×mτ1+1tn+1η(τ2,τ1,m)dt+01tμk2(1t)μk3h×mτ1+n+tn+1η(τ2,τ1,m)dt,(6) for k-fractional integrals with x[mτ1,mτ1+η(τ2,τ1,m)], μ>0, k>0 and nN.

Proof.

Integration by parts, we have (7) L1=012(1t)μktμk3h×mτ1+1tn+1η(τ2,τ1,m)dt=n+13η(τ2,τ1,m)h(mτ1)+2(n+1)3η(τ2,τ1,m)h×mτ1+1n+1η(τ2,τ1,m)μk(n+1)μk+13ημk+1(τ2,τ1,m)mτ1mτ1+1n+1η(τ2,τ1,m)h(x)×mτ1+1n+1η(τ2,τ1,m)xμk1dx2μk(n+1)μk+13ημk+1(τ2,τ1,m)mτ1mτ1+1n+1η(τ2,τ1,m)h(x)×(xmτ1)μk1dx(7) and (8) L2=01tμk2(1t)μk3h×mτ1+n+tn+1η(τ2,τ1,m)dt=n+13η(τ2,τ1,m)hmτ1+η(τ2,τ1,m)+2(n+1)3η(τ2,τ1,m)hmτ1+nn+1η(τ2,τ1,m)μk(n+1)μk+13ημk+1(τ2,τ1,m)mτ1+nn+1η(τ2,τ1,m)mτ1+η(τ2,τ1,m)h(x)×xmτ1nn+1η(τ2,τ1,m)μk1dx2μk(n+1)μk+13ημk+1(τ2,τ1,m)mτ1+nn+1η(τ2,τ1,m)mτ1+η(τ2,τ1,m)h(x)×mτ1+η(τ2,τ1,m)xμk1dx.(8) Adding L1 and L2, and then multiplying the both sides of the result by η(τ2,τ1,m)2(n+1), we have (9) η(τ2,τ1,m)2(n+1)L1+L2=16h(mτ1)+hmτ1+η(τ2,τ1,m)+2hmτ1+1n+1η(τ2,τ1,m)+2hmτ1+nn+1η(τ2,τ1,m)μk(n+1)μk6ημk(τ2,τ1,m)mτ1mτ1+1n+1η(τ2,τ1,m)h(x)×mτ1+1n+1η(τ2,τ1,m)xμk1dx+mτ1+nn+1η(τ2,τ1,m)mτ1+η(τ2,τ1,m)h(x)×xmτ1nn+1η(τ2,τ1,m)μk1dxμk(n+1)μk3ημk(τ2,τ1,m)mτ1+nn+1η(τ2,τ1,m)mτ1+η(τ2,τ1,m)h(x)×mτ1+η(τ2,τ1,m)xμk1dx+mτ1mτ1+1n+1η(τ2,τ1,m)h(x)(xmτ1)μk1dx.(9) From the following facts that (10) 1kΓk(μ)mτ1mτ1+1n+1η(τ2,τ1,m)h(x)(xmτ1)μk1dx=kJ(mτ1+1n+1η(τ2,τ1,m))μh(mτ1),(10) (11) 1kΓk(μ)mτ1+nn+1η(τ2,τ1,m)mτ1+η(τ2,τ1,m)h(x)×(mτ1+η(τ2,τ1,m)x)μk1dx=kJ(mτ1+nn+1η(τ2,τ1,m))+μhmτ1+η(τ2,τ1,m),(11) (12) 1kΓk(μ)mτ1mτ1+1n+1η(τ2,τ1,m)h(x)×mτ1+1n+1η(τ2,τ1,m)xμk1dx=kJ(mτ1)+μhmτ1+1n+1η(τ2,τ1,m)(12) and (13) 1kΓk(μ)mτ1+nn+1η(τ2,τ1,m)mτ1+η(τ2,τ1,m)h(x)×xmτ1nn+1η(τ2,τ1,m)μk1dx=kJ(mτ1+η(τ2,τ1,m))μhmτ1+nn+1η(τ2,τ1,m),(13) which completes the proof.

Remark 2.1

In Lemma 2.1, taking η(τ2,τ1,m)=τ2mτ1 with m = 1 and k = 1, we have Lemma 2.1 in [Citation6].

Theorem 2.1

For ρ>1 with ϱ1+ρ1=1, if |h(x)|ρ is generalized (α,m)-preinvex on A, then the following inequality with μ>0 and k>0 holds: (14) |Δh,η(μ,k;n,m)||η(τ2,τ1,m)|2(n+1)×012(1t)μktμk3ϱdt1ϱ×11(n+1)α(α+1)×m|h(τ1)|ρ+1(n+1)α(α+1)|h(τ2)|ρ1ρ+1(n+1)α(α+1)m|h(τ1)|ρ+21α1(n+1)α(α+1)×|h(τ2)|ρ1ρ.(14)

Proof.

Using Lemma 2.1, the Hölder integral inequality and the generalized (α,m)-preinvexity of |h(x)|ρ, we have (15) |Δh,η(μ,k;n,m)||η(τ2,τ1,m)|2(n+1)012(1t)μktμk3|hmτ1+1tn+1η(τ2,τ1,m)|dt+01tμk2(1t)μk3×hmτ1+n+tn+1η(τ2,τ1,m)dt|η(τ2,τ1,m)|2(n+1)012(1t)μktμk3ϱdt1ϱ×0111tn+1αmh(τ1)ρ+1tn+1αh(τ2)ρdt1ρ+01tμk2(1t)μk3ϱ1ϱ×011n+tn+1αmh(τ1)ρ+n+tn+1αh(τ2)ρdt1ρ.(15) Using the fact that 1uα(1u)α21αuα for u[0,1] with α(0,1], we have (16) 011n+tn+1αmh(τ1)ρ+n+tn+1αh(τ2)ρdt011tn+1αmh(τ1)ρ+21α1tn+1αh(τ2)ρdt=1(n+1)α(α+1)mh(τ1)ρ+21α1(n+1)α(α+1)h(τ2)ρ.(16) From (Equation15) and (Equation16), we get the desired result in (Equation14), since (17) 0111tn+1αmh(τ1)ρ+1tn+1αh(τ2)ρdt=11(n+1)α(α+1)mh(τ1)ρ+1(n+1)α(α+1)h(τ2)ρ.(17)

Remark 2.2

In Theorem 2.1, taking η(τ2,τ1,m)=τ2mτ1 with m = 1 and k=1=α, we have Theorem 2.3 in [Citation6].

Corollary 2.1

In Theorem 2.1, taking η(τ2,τ1,m)=τ2mτ1 with m=1, and choosing n=1=α with μ=1=k, we have the following inequalities (18) |16h(τ1)+4hτ1+τ22+h(τ2)1τ2τ1τ1τ2h(x)dx|τ2τ141+2ϱ+13ϱ+1(ϱ+1)1ϱ×34|h(τ1)|ρ+14|h(τ2)|ρ1ρ+14|h(τ1)|ρ+34|h(τ2)|ρ1ρτ2τ141+2ϱ+13ϱ+1(ϱ+1)1ϱ341ρ+141ρ×|h(τ1)|+|h(τ2)|.(18)

Proof.

The second inequality is obtained by using the fact that k=1n(ξk+γk)sk=1n(ξk)s+k=1n(γk)s for (0s1), ξ1, ξ2, ξ3,…, ξn0; γ1, γ2, γ3,…, γn0.

In the next theorem, we use the following functions.

(1) The beta function, (19) β(u,v)=Γ(u)Γ(v)Γ(u+v)=01tu1(1t)v1dt,u,v>0.(19)

(2) The incomplete beta function, (20) β(λ;u,v)=0λtu1(1t)v1dt,  0<λ<1, u,v>0.(20)

Theorem 2.2

If |h(x)|ρ for ρ1 is generalized (α,m)-preinvex on A, then the following inequality with μ>0 and k>0 holds: (21) |Δh,η(μ,k;n,m)||η(τ2,τ1,m)|2(n+1)K011ρ×K0K1m|h(τ1)|ρ+K1|h(τ2)|ρ1ρ+K1m|h(τ1)|ρ+21αK0K1×|h(τ2)|ρ1ρ,(21)

where (22) K0:=322kμ2kμ+1μk+1412kμ2kμ+1μk+13(μk+1)(22) and (23) K1:=2412kμ2kμ+1μk+α+13(n+1)α(μk+α+1)+13(n+1)α×βμk+1,α+12β2kμ2kμ+1;μk+1,α+1.(23)

Proof.

Suppose that ρ=1. From Lemma 2.1 and using the generalized (α,m)-preinvexity of |h(x)|, we have (24) |Δh,η(μ,k;n,m)||η(τ2,τ1,m)|2(n+1)012(1t)μktμk3×11tn+1αm|h(τ1)|+1tn+1α|h(τ2)|dt+01tμk2(1t)μk3×1n+tn+1αm|h(τ1)|+n+tn+1α|h(τ2)|dt.(24) From (Equation24) we get the desired inequality (Equation21) for ρ=1, since (25) 01tμk2(1t)μk31n+tn+1αm|h(τ1)|+n+tn+1α|h(τ2)|dtm|h(τ1)|01tμk2(1t)μk31tn+1αdt+|h(τ2)|01tμk2(1t)μk3×21α1tn+1αdt,(25) (26) 01tμk2(1t)μk311tn+1αdt=322kμ2kμ+1μk+1412kμ2kμ+1μk+13(μk+1)2412kμ2kμ+1μk+α+13(n+1)α(μk+α+1)+13(n+1)α2β2kμ2kμ+1;μk+1,α+1βμk+1,α+1=K0K1,(26) (27) 01tμk2(1t)μk31tn+1αdt=2412kμ2kμ+1μk+α+13(n+1)α(μk+α+1)+13(n+1)α×βμk+1,α+12β2kμ2kμ+1;μk+1,α+1=K1(27) and (28) 01tμk2(1t)μk321α1tn+1αdt=21α322kμ2kμ+1μk+1412kμ2kμ+1μk+13(μk+1)2412kμ2kμ+1μk+α+13(n+1)α(μk+α+1)+13(n+1)α2β2kμ2kμ+1;μk+1,α+1βμk+1,α+1=21αK0K1.(28) Now Suppose ρ>1. Using Lemma 2.1 and the Hölder's integral inequality in the following way, we have (29) |Δh,η(μ,k;n,m)||η(τ2,τ1,m)|2(n+1)×012(1t)μktμk3dt11ρ×012(1t)μktμk3|hmτ1+1tn+1η(τ2,τ1,m)|ρdt1ρ+01tμk2(1t)μk3×hmτ1+n+tn+1η(τ2,τ1,m)ρdt1ρ.(29) Considering the generalized (α,m)-preinvexity of |h(x)|ρ, we get (30) |Δh,η(μ,k;n,m)||η(τ2,τ1,m)|2(n+1)012(1t)μktμk3dt11ρ×012(1t)μktμk3×11tn+1αm|h(τ1)|ρ+1tn+1α|h(τ2)|ρdt1ρ+01tμk2(1t)μk3×1n+tn+1αm|h(τ1)|ρ+n+tn+1α|h(τ2)|ρdt1ρ,(30) where (31) 012(1t)μktμk3dt=322kμ2kμ+1μk+1412kμ2kμ+1μk+13(μk+1)=K0.(31) A combination of (Equation25), (Equation26), (Equation27) and (Equation28) into (Equation30) with (Equation31) gives the desired result in (Equation21) for ρ>1. This ends the proof.

Corollary 2.2

In Theorem 2.2, taking η(τ2,τ1,m)=τ2mτ1 with m=1, and choosing n=1=α with μ=1=k, we have (32) |16h(τ1)+4hτ1+τ22+h(τ2)1τ2τ1τ1τ2h(x)dx|τ2τ1451811ρ61434|h(τ1)|ρ+29434|h(τ2)|ρ1ρ+29434|h(τ1)|ρ+61434|h(τ2)|ρ1ρ(τ2τ1)451811ρ614341ρ+294341ρ×|h(τ1)|+|h(τ2)|.(32)

Remark 2.3

In Theorem 2.2, taking η(τ2,τ1,m)=τ2mτ1 with m = 1, ρ=1 and k=1=α, we have Theorem 2.2 in [Citation6]. Furthermore, choosing μ=1=n, one has Corollary 1 in [Citation22].

For obtaining further estimation-type results, we next deal with the boundedness and the Lipschitzian condition of h.

Theorem 2.3

If there exist constants r<R satisfying that <rh(x)R< for all x[τ1,τ2], then the following inequality (33) |Δh,η(μ,k;n,m)|(Rr)|η(τ2,τ1,m)|322kμ2kμ+1μk+1412kμ2kμ+1μk+16(n+1)(μk+1)(33) holds with μ>0, k>0, nN and m(0,1].

Proof.

From Lemma 2.1, one has (34) Δh,η(μ,k;n,m)=η(τ2,τ1,m)2(n+1)012(1t)μktμk3×hmτ1+1tn+1η(τ2,τ1,m)r+R2dt+01tμk2(1t)μk3×hmτ1+n+tn+1η(τ2,τ1,m)r+R2dt.(34) Utilizing the fact that rr+R2h(mτ1+1tn+1η(τ2,τ1,m))r+R2Rr+R2, one has (35) hmτ1+1tn+1η(τ2,τ1,m)r+R2Rr2.(35) Similarly, (36) hmτ1+n+tn+1η(τ2,τ1,m)r+R2Rr2.(36) Therefore (37) |Δh,η(μ,k;n,m)||η(τ2,τ1,m)|2(n+1)×012(1t)μktμk3×hmτ1+1tn+1η(τ2,τ1,m)r+R2dt+01tμk2(1t)μk3×hmτ1+n+tn+1η(τ2,τ1,m)r+R2dt(Rr)|η(τ2,τ1,m)|2(n+1)01×2(1t)μktμk3dt=(Rr)|η(τ2,τ1,m)|322kμ2kμ+1μk+1412kμ2kμ+1μk+16(n+1)μk+1.(37) This ends the proof.

Theorem 2.4

If h satisfies Lipschitz condition on [τ1,τ2] for certain L>0, then the following inequality (38) |Δh,η(μ,k;n,m)|Lη2(τ2,τ1,m)2(n+1)2×(n1)322μk2μk+1μk+1412μk2μk+1μk+13(μk+1)+K2(38) holds with μ>0, k>0, nN and m(0,1],

where (39) K2:=42μk2μk+1μk+223(μk+2)+83β2μk2μk+1;μk+1,243βμk+1,2.(39)

Proof.

From Lemma 2.1, we get (40) Δh,η(μ,k;n,m)=η(τ2,τ1,m)2(n+1)012(1t)μktμk3×hmτ1+1tn+1η(τ2,τ1,m)hmτ1+n+tn+1η(τ2,τ1,m)dt.(40) Since h satisfies Lipschitz condition on [τ1,τ2], for certain L>0, we have (41) hmτ1+1tn+1η(τ2,τ1,m)hmτ1+n+tn+1η(τ2,τ1,m)Lη(τ2,τ1,m)2t+n1n+1.(41) Therefore (42) |Δh,η(μ,k;n,m)||η(τ2,τ1,m)|2(n+1)012(1t)μktμk3hmτ1+1tn+1η(τ2,τ1,m)hmτ1+n+tn+1η(τ2,τ1,m)dtLη2(τ2,τ1,m)2(n+1)012(1t)μktμk3×2t+n1n+1dt=Lη2(τ2,τ1,m)2(n+1)2×(n1)322μk2μk+1μk+1412μk2μk+1μk+13(μk+1)42μk2μk+1μk+223(μk+2)+83β2μk2μk+1;μk+1,243βμk+1,2(n1)322μk2μk+1μk+1412μk2μk+1μk+13(μk+1).(42) The proof is completed.

Remark 2.4

As several special cases of Theorems 2.3 and 2.4 above, some sub-results can be deduced by taking different mappings η and special parameter values for μ, k, n and m.

3. Applications

3.1. f-divergence measures

Let the set φ and the σ -finite measure μ be given, and let the set of all probability densities on μ to be defined on Ω:={p|p:φR,p(x)>0,φp(x)dμ(x)=1}.

Let f:(0,)R be given mapping and consider Df(p,q) be defined by (43) Df(p,q):=φp(x)fq(x)p(x)dμ(x),p,qΩ.(43) If f is convex, then (Equation43) is called as the Csisźar f-divergence.

Consider the following Hermite-Hadamard (HH) divergence (44) DHHf(p,q):=φp(x)1q(x)p(x)f(t)dtq(x)p(x)1dμ(x),p,qΩ,(44) where f is convex on (0,) with f(1)=0. Note that DHHf(p;q)0 with the equality holds if and only if p = q.

Proposition 3.1

Let all assumptions of Corollary 2.1 hold with A=(0,) and f(1)=0, if p, qΩ, then the following inequality holds: (45) 16Df(p,q)+4φp(x)fp(x)+q(x)2p(x)dμ(x)DHHf(p,q)1+2ϱ+13ϱ+1(ϱ+1)1ϱ4341ρ+141ρ×|f(1)|φq(x)p(x)dμ(x)+φq(x)p(x)fq(x)p(x)dμ(x).(45)

Proof.

Let Φ1={xφ:q(x)>p(x)}, Φ2={xφ:q(x)<p(x)} and Φ3={xφ:q(x)=p(x)}.

Obviously, if xΦ3, then equality holds in (Equation45). Now if xΦ1, then using Corollary 2.1 for τ1=1, τ2=q(x)p(x), multiplying both sides of the obtained results by p(x) and then integrating on Φ1, we have (46) |164Φ1p(x)fp(x)+q(x)2p(x)dμ(x)+Φ1p(x)fq(x)p(x)dμ(x)Φ1p(x)1q(x)p(x)f(t)dtq(x)p(x)1dμ(x)|1+2ϱ+13ϱ+1(ϱ+1)1ϱ4341ρ+141ρ×|f(1)|Φ1q(x)p(x)dμ(x)+Φ1q(x)p(x)fq(x)p(x)dμ(x).(46) Similarly if xΦ2, then using Corollary 2.1 for τ1=q(x)p(x) and τ2=1, multiplying both sides of the obtained results by p(x) and then integrating over Φ2, we get (47) |164Φ2p(x)fp(x)+q(x)2p(x)dμ(x)+Φ2p(x)fq(x)p(x)dμ(x)Φ2p(x)1q(x)p(x)f(t)dtq(x)p(x)1dμ(x)|1+2ϱ+13ϱ+1(ϱ+1)1ϱ4341ρ+141ρ×|f(1)|Φ2p(x)q(x)dμ(x)+Φ2p(x)q(x)fq(x)p(x)dμ(x).(47) Adding inequalities (Equation46) and (Equation47), and utilizing triangular inequality, we get the result.

Proposition 3.2

Let all assumptions of Corollary 2.2 hold with A=(0,) and f(1)=0, if p, qΩ, then the following inequality holds: (48) |16Df(p,q)+4φp(x)fp(x)+q(x)2p(x)dμ(x)DHHf(p,q)|51811ρ613241ρ+293241ρ×|f(1)|φ|q(x)p(x)|4dμ(x)+φ|q(x)p(x)|4fq(x)p(x)dμ(x).(48)

Proof.

The proof is similar as to that of Proposition 3.1 but replace Corollary 2.1 with Corollary 2.2.

3.2. Probability density functions

Let g:[τ1,τ2][0,1] be the probability density mapping of a continuous random variable X with the cumulative distribution mapping (49) F(x)=Pr(Xx)=τ1xg(t)dt.(49) Using the fact that E(X)=τ1τ2tdF(t)=τ2τ1τ2F(t)dt, we have the following results.

Proposition 3.3

By Corollary 2.1, we get the inequality (50) 164PrXτ1+τ22+11τ2τ1(τ2E(X))τ2τ141+2ϱ+13ϱ+1(ϱ+1)1ϱ341ρ+141ρ×|g(τ1)|+|g(τ2)|.(50)

Proposition 3.4

By Corollary 2.2, we get the inequality (51) 164PrXτ1+τ22+11τ2τ1(τ2E(X))(τ2τ1)451811ρ614341ρ+294341ρ×|g(τ1)|+|g(τ2)|.(51) Specially, taking ρ=1, we have (52) 164PrXτ1+τ22+11τ2τ1(τ2E(X))5(τ2τ1)72|g(τ1)|+|g(τ2)|.(52)

Remark 3.1

Applications can be provided in terms of the obtained results to special means, and we omit the details.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

  • Hsu K-C, Hwang S-R, Tseng K-L. Some extended Simpson-type inequalities and applications. Bull Iranian Math Soc. 2017;43(2):409–425.
  • Du TS, Li YJ, Yang ZQ. A generalization of Simpson's inequality via differentiable mapping using extended (s,m)-convex functions. Appl Math Comput. 2017;293:358–369.
  • Noor MA, Noor KI, Awan MU. Simpson-type inequalities for geometrically relative convex functions. Ukrainian Math J. 2018;70(7):992–1000. doi: 10.1007/s11253-018-1558-0
  • İşcan İ, Turhan S, Maden S. Hermite–Hadamard and Simpson-like type inequalities for differentiable p-quasi-convex functions. Filomat. 2017;31(19):5945–5953. doi: 10.2298/FIL1719945I
  • Tunç M, Yildiz Ç, Ekİncİ A. On some inequalities of Simpson's type via h-convex functions. Hacet J Math Stat. 2013;42(4):309–317.
  • Set E, Akdemir AO, Özdemir ME. Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat. 2017;31(14):4415–4420. doi: 10.2298/FIL1714415S
  • Hwang SR, Tseng KL, Hsu KC. New inequalities for fractional integrals and their applications. Turkish J Math. 2016;40:471–486. doi: 10.3906/mat-1411-61
  • İşcan İ. Generalization of different type integral inequalities for s-convex functions via fractional integrals. Appl Anal. 2014;93(9):1846–1862. doi: 10.1080/00036811.2013.851785
  • Hussain S, Qaisar S. More results on Simpson's type inequality through convexity for twice differentiable continuous mappings. SpringerPlus. 2016;5:77. doi: 10.1186/s40064-016-1683-x
  • Matłoka M. Weighted Simpson type inequalities for h-convex functions. J Nonlinear Sci Appl. 2017;10:5770–5780. doi: 10.22436/jnsa.010.11.15
  • Qaisar S, He CJ, Hussain S. A generalizations of Simpson's type inequality for differentiable functions using (α,m)-convex functions and applications. J Inequal Appl. 2013;2013:158. doi: 10.1186/1029-242X-2013-158
  • Ujević N. Sharp inequalities of Simpson type and Ostrowski type. Comput Math Appl. 2004;48:145–151. doi: 10.1016/j.camwa.2003.09.026
  • Ul-Haq W, Rehman N, Al-Hussain ZA. Hermite–Hadamard type inequalities for r-convex positive stochastic processes. J Taibah Univ Sci. 2019;13(1):87–90. doi: 10.1080/16583655.2018.1537210
  • Sohail A, Maqbool K, Ellahi R. Stability analysis for fractional-order partial differential equations by means of space spectral time Adams–Bashforth Moulton method. Numer Methods Partial Differ Equ. 2018;34(1):19–29. doi: 10.1002/num.22171
  • Hameed M, Khan AA, Ellahi R, et al. Study of magnetic and heat transfer on the peristaltic transport of a fractional second grade fluid in a vertical tube. Eng Sci Techn Int J. 2015;18(3):496–502. doi: 10.1016/j.jestch.2015.03.004
  • Khan U, Ellahi R, Khan R, et al. Extracting new solitary wave solutions of Benny-Luke equation and Phi-4 equation of fractional order by using (G′/G)-expansion method. Opt Quant Electron. 2017;49:362. doi: 10.1007/s11082-017-1191-4
  • Khan R, Ellahi R, Mohyud-Din ST, et al. Exact traveling mave solutions of fractional order Boussinesq-like equations by applying exp-function method. Results Phys. 2018;8:114–120. doi: 10.1016/j.rinp.2017.11.023
  • Mubeen S, Habibullah GM. k-fractional integrals and application. Int J Contemp Math Sci. 2012;7(2):89–94.
  • Du TS, Awan MU, Kashuri A, et al. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity. Appl Anal. 2019. Available from: https://doi.org/10.1080/00036811.2019.1616083
  • Du TS, Wang H, Latif MA, et al. Estimation type results associated to k-fractional integral inequalities with applications. J King Saud Univ Sci. 2018. Available from: https://doi.org/10.1016/j.jksus.2018.09.010
  • Kwun YC, Farid G, Nazeer W, et al. Generalized Riemann–Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access. 2018;6:64946–64953. doi: 10.1109/ACCESS.2018.2878266
  • Sarikaya MZ, Set E, Özdemir ME. On new inequalities of Simpson's type for s-convex functions. Comput Math Appl. 2010;60:2191–2199. doi: 10.1016/j.camwa.2010.07.033