425
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Global dynamics of an exponential system by a discrete-time Lyapunov function

ORCID Icon & ORCID Icon
Pages 513-523 | Received 18 Sep 2019, Accepted 16 Mar 2020, Published online: 15 Apr 2020

Abstract

In this paper, we explore the boundedness and persistence of positive solution, existence as well as uniqueness of positive equilibrium point, existence of invariant rectangle, local and global dynamics, and rate of convergence of three-directional discrete-time exponential system. Finally, numerical simulations are given to verify not only obtained results but also to have the appearance of stable invariant close curves. The appearance of close curves grantee the fact that the system undergoes a supercritical hopf bifurcation.

Mathematics Subject Classifications:

1. Introduction

Difference equations manifest themselves as mathematical models describing real-life situations in queuing problems, stochastic time series, statistical problems, number theory, geometry, combinatorial analysis, genetics in biology, quanta in radiation, economics, electrical networks, sociology, probability theory, psychology, etc. Generally, difference equations are considered as approximations of differential equations but fascinating on their own. Historically, difference equations were occurred before differential equations and have played a major role in the development of the later. During last few decades, theory of difference equations received attention for mathematicians and users of mathematics, and developed impressively because of its internal mathematical beauty and applicability in almost all branches of modern science. Examining the qualitative nature of such equations, especially an exponential difference equation, is very interesting and attracted many researchers in recent times. In this regard, El-Metwally et al. [Citation1] have explored global dynamics of the following exponential difference equation: (1) xn+1=α1+α2xn1exn,(1) where αs (s=1,2) and xs(s=1,0) are +ve real numbers. Ozturk et al. [Citation2] have explored global dynamics of the following exponential difference equation: (2) xn+1=α1+α2exnα3+xn1,(2) where αs (s=1,2,3) and xs(s=1,0) are +ve real numbers. Papaschinopoulos et al. [Citation3] have explored global dynamics of the following systems of the exponential difference equation: (3) xn+1=α1+α2eynα3+yn1,yn+1=α4+α5exnα6+xn1,xn+1=α1+α2eynα3+xn1,yn+1=α4+α5exnα6+yn1,xn+1=α1+α2exnα3+yn1,yn+1=α4+α5eynα6+xn1,(3) where αs (s=1,,6) and xs,ys(s=1,0) are +ve real numbers. Khan [Citation4] has explored global dynamics of the following systems of exponential difference equations: (4) xn+1=α1+α2eynα3+zn1,yn+1=α4+α5eznα6+xn1,zn+1=α7+α8exnα9+yn1,xn+1=α1+α2eynα3+zn1,yn+1=α4+α5exnα6+yn1,zn+1=α7+α8eynα9+zn1,(4) where αs(s=1,,9) and xs,ys(s=1,0) are +ve real numbers. Bozkurt [Citation5] has explored the global dynamics of the following difference equation: (5) xn+1=α1exn+α2exn1α3+α1xn+α2xn1,(5) where αs (s=1,2,3) and xs(s=1,0) are +ve real numbers. Khan and Qureshi [Citation6] have explored the global dynamics of the following exponential system: (6) xn+1=α1eyn+α2eyn1α3+α1xn+α2xn1,yn+1=α4exn+α5exn1α6+α4yn+α5yn1,(6) where αs (s=1,,6) and xs(s=1,0) are +ve real numbers. Motivation from above existing studies, here our purpose is to explore the global dynamical properties of the following three-directional exponential system, that is, the extension of the work of Bozkurt [Citation5] and Khan and Qureshi [Citation6]: (7) xn+1=α1exn+α2exn1α3+α1yn+α2yn1,yn+1=α4eyn+α5eyn1α6+α4zn+α5zn1,zn+1=α7ezn+α8ezn1α9+α7xn+α8xn1,(7) where αs (s=1,,9) and xs,ys,zs(s=1,0) are +ve real numbers.

The remaining paper is organized as follows: in Section 2, we investigate that every +ve solution {(xn,yn,zn)}n=1 of (Equation7) is bounded and persists, whereas construction of invariant rectangle is explored in Section 3. In Section 4, we explore the existence as well as uniqueness of the +ve equilibrium point of (Equation7). In Section 5, we explore the local dynamical properties about the unique +ve equilibrium point of (Equation7). In Section 6, we investigate the global dynamics about the +ve equilibrium by a discrete-time Lyapunov function. We study the rate of convergence in Section 7, whereas numerical simulation is given in Section 8. A brief summary is given in the last section.

2. Boundedness and persistence

Theorem 2.1

Every positive solution {Ωn}n=1 of (Equation7) is bounded and persists.

Proof.

If {Ωn}n=1 is a +ve solution of (Equation7), then (8) xnα1+α2α3=U1,ynα4+α5α6=U2,znα7+α8α9=U3,n=1,2,(8) From (Equation7) and (Equation8), one gets (9) xnα1+α2e((α1+α2)/α3)α3+α1+α2(α4+α5)/α6=L1,ynα4+α5e((α4+α5)/α6)α6+α4+α5(α7+α8)/α9=L2,znα7+α8e((α7+α8)/α9)α9+α7+α8(α1+α2)/α3=L3,                                                             n=2,3,(9) From (Equation8) and (Equation9), we obtain (10) L1xnU1,L2ynU2,L3znU3,n=3,4,(10)

3. Invariant rectangle for the system under consideration

Theorem 3.1

If the +ve solution of (Equation7) is {Ωn}n=1, then its corresponding invariant rectangle is [L1,U1]×[L2,U2]×[L3,U3].

Proof.

If {Ωn}n=1 is the +ve solution with x0,x1[L1,U1],y0,y1[L2,U2] and z0,z1[L3,U3], then from (Equation7), one has (11) x1=α1ex0+α2ex1α3+α1y0+α2y1α1+α2α3,x1=α1ex0+α2ex1α3+α1y0+α2y1,α1+α2e((α1+α2)/α3)α3+α1+α2(α4+α5)/α6,y1=α4ey0+α5ey1α6+α4z0+α5z1α4+α5α6,y1=α4ey0+α5ey1α6+α4z0+α5z1,α4+α5e((α4+α5)/α6)α6+α4+α5(α7+α8)/α9,z1=α7ez0+α8ez1α9+α7x0+α8x1α7+α8α9,z1=α7ez0+α8ez1α9+α7x0+α8x1,α7+α8e((α7+α8)/α9)α9+α7+α8(α1+α2)/α3.(11) Hence, (Equation11) then implies that x1[L1,U1], y1[L2,U2] and  z1[L3,U3]. Finally from (Equation7), it is easy to establish that xk+1[L1,U1] (respectively, yk+1[L2,U2]and zk+1[L3,U3]) if xk[L1,U1] (respectively, yk[L2,U2] and zk[L3,U3]).

4. Existence as well as uniqueness of the +ve fixed point

Theorem 4.1

System (Equation7) has a unique +ve fixed point: Υ=(x¯,y¯,z¯)[L1,U1]×[L2,U2]×[L3,U3] if (12) e(eU3/L3)(α9/(α7+α8))U3+1eL3α9α7+α8eU3L31U32eL3L3α9α7+α82×ee(eL3/U3)(α9/(α7+α8))(eL3/L3)(α9/(α7+α8))α3α1+α2×Λ+1<Λ2,(12) where Λ is defined in (Equation21).

Proof.

From (Equation7), one has (13) x=α1+α2exα3+α1+α2y,y=α4+α5eyα6+α4+α5z,z=α7+α8ezα9+α7+α8x.(13) From (Equation13), one obtains (14) y=exxα3α1+α2,z=eyyα6α4+α5,x=ezzα9α7+α8.(14) From (Equation14), set (15) y=h(x)=exxα3α1+α2,x=g(z)=ezzα9α7+α8.(15) Denote (16) F(z):=ek(z)k(z)α6α4+α5z,(16) where (17) k(z):=y=h(g(z))=hezzα9α7+α8=e(ez/z)(α9/(α7+α8))(ez/z)(α9/(α7+α8))α3α1+α2(17) and z[L3,U3]. Here, one need to prove if z[L3,U3], then F(z)=0. From (Equation16) and (Equation17), one obtains (18) F(z)=k(z)ek(z)k(z)+1(k(z))21,(18) where (19) k(z)=e(ez/z)(α9/(α7+α8))z+1ez(α9/(α7+α8))(ez/z)1z2(ez/z)(α9/(α7+α8))2.(19) Using (Equation17) and (Equation19) in (Equation18), we obtain (20) F(z)=eezzα9α7+α8z+1ezα9α7+α8ezz1z2ezzα9α7+α82eeezzα9α7+α8ezzα9α7+α8α3α1+α2eezzα9α7+α8ezzα9α7+α8α3α1+α2+1eezzα9α7+α8ezzα9α7+α8α3α1+α221,eeU3L3α9α7+α8U3+1eL3α9α7+α8eU3L31U32eL3L3α9α7+α82eeeL3U3α9α7+α8eL3L3α9α7+α8α3α1+α2Λ+1Λ21,(20) where (21) Λ=e(eU3/L3)(α9/(α7+α8))(eL3/L3)(α9/(α7+α8))α3α1+α2.(21) Now assuming that if (Equation12) and (Equation21) hold from (Equation20), we obtain F(z)<0.

5. Local dynamics about the unique +ve equilibrium point

Theorem 5.1

For equilibrium Υ of (Equation7), the following holds:

  1. Υ is a sink if (22) α1+α2eL1α3+α1+α2L2+α7+α8eL3α9+α7+α8L1+α4+α5eL2α6+α4+α5L3+α1α4+α1α5eL1L2(α6+(α4+α5)L3)(α3+(α1+α2)L2)+α4α7+α5α7+α4α8eL2L3(α6+(α4+α5)L3)(α9+(α7+α8)L1)+α1α7eL1L3(α9+(α7+α8)L1)(α3+(α1+α2)L2)+α1α8eL1L2(α9+(α7+α8)L1)(α3+(α1+α2)L2)+α2α5α8+α1α4α7+α1α5α8+α2α5α7+α2α4α8eL1L2L3(α9+(α7+α8)L1)(α3+(α1+α2)L2)(α6+(α4+α5)L3)+α2α5α8+α1α5α8+α2α5α7+α5α1α7U1U2U3(α9+(α7+α8)L1)(α3+(α1+α2)L2)(α6+(α4+α5)L3)<1;(22)

  2. Υ is a source if (23) α1+α2eU1α3+α1+α2U2+α7+α8eU3α9+α7+α8U1+α4+α5eU2α6+α4+α5U3+α1α4+α1α5eU1U2(α6+(α4+α5)U3)(α3+(α1+α2)U2)+α4α7+α5α7+α4α8eU2U3(α6+(α4+α5)U3)(α9+(α7+α8)U1)+α1α7eU1U3(α9+(α7+α8)U1)(α3+(α1+α2)U2)+α1α8eU1U2(α9+(α7+α8)U1)(α3+(α1+α2)U2)+α2α5α8+α1α4α7+α1α5α8+α2α5α7+α2α4α8eU1U2U3(α9+(α7+α8)U1)(α3+(α1+α2)U2)(α6+(α4+α5)U3)+α2α5α8+α1α5α8+α2α5α7+α5α1α7L1L2L3(α9+(α7+α8)U1)(α3+(α1+α2)U2)(α6+(α4+α5)U3)>1.(23)

Proof.

(i) If Υ is an equilibrium point of (Equation7), then (24) x¯=α1+α2ex¯α3+α1+α2y¯,y¯=α4+α5ey¯α6+α4+α5z¯,z¯=α7+α8ez¯α9+α7+α8x¯.(24) Moreover, we have the following map for constructing the corresponding linearized form of (Equation7): (25) xn+1,xn,yn+1,yn,zn+1,zn(f,f1,g,g1,h,h1),(25) with (26) f=α1exn+α2exn1α3+α1yn+α2yn1,f1=xn,g=α4eyn+α5eyn1α6+α4zn+α5zn1,g1=yn,h=α7ezn+α8ezn1α9+α7xn+α8xn1,h1=zn.(26) The J|Υ about Υ subject to map (Equation25) is (27) J|Υ=a11a12a13a140010000000a33a34a35a36001000a51a5200a55a56000010,(27) where (28) a11=α1ex¯α3+α1+α2y¯,a12=α2ex¯α3+α1+α2y¯,a13=α1x¯α3+α1+α2y¯,a14=α2x¯α3+α1+α2y¯,a33=α4ey¯α6+α4+α5z¯,a34=α5ey¯α6+α4+α5z¯,a35=α4y¯α6+α4+α5z¯,a36=α5y¯α6+α4+α5z¯,a51=α7z¯α9+α7+α8x¯,a52=α8z¯α9+α7+α8x¯,a55=α7ez¯α9+α7+α8x¯,a56=α8ez¯α9+α7+α8x¯.(28) The auxiliary equation of J|Υ about Υ is (29) P(λ)=λ6+Γ1λ5+Γ2λ4+Γ3λ3+Γ4λ2+Γ5λ1+Γ6=0,(29) where (30) Γ1=a11a33a55,Γ2=a33a11+a55a11+a33a55a34a12a56,Γ3=a11a33a56+a11a34+a34a55+a12a33+a12a55a51a13a35+a11a56+a33a56,Γ4=a12a34a12a33a55a13a35a52a51a14a35a11a34a55a51a13a36+a12a56a11a33a56+a34a56,Γ5=a11a34a56a12a34a55a12a33a56a52a14a35a52a13a36a51a14a36,Γ6=a52a14a36a12a34a56,(30)

Assuming that (Equation22) holds, then from (31), one obtains: i=16|Γi|<1. Hence, Υ of (Equation7) is locally asymptotically stable.

(ii) By similar manipulation as for the proof of (i), we obtain (32) i=16|Γi|α1+α2eU1α3+α1+α2U2+α7+α8eU3α9+α7+α8U1+α4+α5eU2α6+α4+α5U3+α1α4+α1α5eU1U2(α6+(α4+α5)L3)(α3+(α1+α2)U2)+α4α7+α5α7+α4α8eU2U3(α6+(α4+α5)U3)(α9+(α7+α8)U1)+α1α7eU1L3(α9+(α7+α8)U1)(α3+(α1+α2)U2)+α1α8eU1L2(α9+(α7+α8)U1)(α3+(α1+α2)U2)+α2α5α8+α1α4α7+α1α5α8+α2α5α7+α2α4α8eU1U2U3(α9+(α7+α8)U1)(α3+(α1+α2)U2)(α6+(α4+α5)U3)+α2α5α8+α1α5α8+α2α5α7L1L2L3(α9+(α7+α8)U1)(α3+(α1+α2)U2)(α6+(α4+α5)U3)+α5α1α7L1L2L3(α9+(α7+α8)U1)(α3+(α1+α2)U2)(α6+(α4+α5)U3)=α1+α2eU1α3+α1+α2U2+α7+α8eU3α9+α7+α8U1+α4+α5eU2α6+α4+α5U3+α1α4+α1α5eU1U2(α6+(α4+α5)U3)(α3+(α1+α2)U2)+α4α7+α5α7+α4α8eU2U3(α6+(α4+α5)U3)(α9+(α7+α8)U1)++α1α7eU1U3(α9+(α7+α8)U1)(α3+(α1+α2)U2)+α1α8eU1U2(α9+(α7+α8)U1)(α3+(α1+α2)U2)+α2α5α8+α1α4α7+α1α5α8+α2α5α7+α2α4α8eU1U2U3(α9+(α7+α8)U1)(α3+(α1+α2)U2)(α6+(α4+α5)U3)+α2α5α8+α1α5α8+α2α5α7+α5α1α7L1L2L3(α9+(α7+α8)U1)(α3+(α1+α2)U2)(α6+(α4+α5)U3).(32) Assuming that (Equation23) holds, then from (Equation32), one obtains: i=16|Γi|>1. Hence, Υ of (Equation7) is a source.

6. Global dynamics of (7) about the +ve equilibrium point

Hereafter, global dynamical properties of (Equation7) are explored about Υ by constructing a discrete-time Lyapunov function motivated from the exiting work [Citation5].

Theorem 6.1

Equilibrium Υ of (Equation7) is globally asymptotically stable if (33) α1+α2eL1<2x¯U1α3+α1+α2L2,α4+α5eL2<2y¯U2α6+α4+α5L3,α7+α8eL3<2z¯U3α9+α7+α8L1.(33)

Proof.

Consider the following discrete-time Lyapunov function: (34) Γn=xnx¯2+yny¯2+znz¯2.(34) Now, (35) ΔΓn=Γn+1Γn=xn+1xnxn+1+xn2x¯+yn+1ynyn+1+yn2y¯+zn+1znzn+1+zn2z¯=(xn+1xn)α1exn+α2exn1α3+α1yn+α2yn1+xn2x¯+(yn+1yn)α4eyn+α5eyn1α6+α4zn+α5zn1+yn2y¯+(zn+1zn)α7ezn+α8ezn1α9+α7xn+α8xn1+zn2z¯(U1L1)α1+α2eL1α3+α1+α2L2+U12x¯+(U2L2)α4+α5eL2α6+α4+α5L3+U22y¯+(U3L3)α7+α8eL3α9+α7+α8L1+U32z¯=U1L1(α1+α2eL1+U1(α3+(α1+α2)L2)2x¯(α3+α1+α2L2)α3+α1+α2L2)+U2L2(α4+α5eL2+U2(α6+(α4+α5)L3)2y¯(α6+α4+α5L3)α6+α4+α5L3)+U3L3(α7+α8eL3+U3(α9+(α7+α8)L1)2z¯(α9+α7+α8L1)α9+α7+α8L1).(35) From (Equation33) and (Equation35), one obtains: ΔΓn<0 for all n0. Hence, we obtain that limn(Γn+1Γn)=0, and thus Υ of (Equation7) is globally asymptotically stable.

7. Rate of convergence

We will explore the convergence result about Υ motivated from the work of Garić-Demirović and Kulenović [Citation7] in this section.

Theorem 7.1

If the +ve solution of (Equation7) is {Ωn}n=1, s.t., (36) limnxn=x¯,limnyn=y¯,limnzn=z¯(36) with (37) x¯[L1,U1],y¯[L2,U2],z¯[L3,U3],(37) then error vector, i.e. ϑn=(ϑn1,ϑn11,ϑn2,ϑn12,ϑn3,ϑn13)T satisfies (38) limnϑn1/n=|λ1,,6J|Υ|,limnϑn+1en=|λ1,,6J|Υ|,(38) where |λ1,,6J|Υ| are root of J|Υ.

Proof.

If the +ve solution of (Equation7) is {Ωn}n=1, s.t., (Equation36) along (Equation37) hold, then (39) xn+1x¯=α1exn+α2exn1α3+α1yn+α2yn1α1+α2ex¯α3+α1+α2y¯=α1(exnex¯)(α3+α1yn+α2yn1)(xnx¯)(xnx¯)+α2(exn1ex¯)(α3+α1yn+α2yn1)(xn1x¯)(xn1x¯)α1x¯α3+α1yn+α2yn1(yny¯)α2x¯α3+α1yn+α2yn1(yn1y¯),yn+1y¯=α4eyn+α5eyn1α6+α4zn+α5zn1α4+α5ey¯α6+α4+α5z¯,=α4(eyney¯)(α6+α4zn+α5zn1)(yny¯)(yny¯)+α5(eyn1ey¯)(α6+α4zn+α5zn1)(yn1y¯)(yn1y¯)α4y¯α6+α4zn+α5zn1(znz¯)α5y¯α6+α4zn+α5zn1(zn1z¯),zn+1z¯=α7eyn+α8eyn1α9+α7zn+α8zn1α7+α8ez¯α9+α7+α8x¯=α7z¯α9+α7xn+α8xn1(xnx¯)α8z¯α9+α7xn+α8xn1(xn1x¯)+α7(eznez¯)(α9+α7xn+α8xn1)(znz¯)(znz¯)+α8(ezn1ez¯)(α9+α7xn+α8xn1)(zn1z¯)(zn1z¯).(39) Denote (40) ϑn1=xnx¯,ϑn2=yny¯,ϑn3=znz¯.(40) From (Equation40), (Equation39) becomes (41) ϑn+11=Π1nϑn1+Π2nϑn11+Π3nϑn2+Π4nϑn12,ϑn+12=Π5nϑn2+Π6nϑn12+Π7nϑn3+Π8nϑn13,ϑn+13=Π9nϑn1+Π10nϑn11+Π11nϑn3+Π12nϑn13,(41) where (42) Π1n=α1(exnex¯)(α3+α1yn+α2yn1)(xnx¯),Π2n=α2(exn1ex¯)(α3+α1yn+α2yn1)(xn1x¯),Π3n=α1x¯α3+α1yn+α2yn1,Π4n=α2x¯α3+α1yn+α2yn1,Π5n=α4(eyney¯)(α6+α4zn+α5zn1)(yny¯),Π6n=α5(eyn1ey¯)(α6+α4zn+α5zn1)(yn1y¯),Π7n=α4y¯α6+α4zn+α5zn1,Π8n=α5y¯α6+α4zn+α5zn1,Π9n=α7z¯α9+α7xn+α8xn1,Π10n=α8z¯α9+α7xn+α8xn1,Π11n=α7(eznez¯)(α9+α7xn+α8xn1)(znz¯),Π12n=α8(ezn1ez¯)(α9+α7xn+α8xn1)(zn1z¯).(42) From (Equation42), one obtains: (43) limnΠ1n=α1ex¯α3+(α1+α2)y¯,limnΠ2n=α2ex¯α3+α1+α2y¯,limnΠ3n=α1x¯α3+α1+α2y¯,limnΠ4n=α2x¯α3+α1+α2y¯,limnΠ5n=α4ey¯α6+α4+α5z¯,limnΠ6n=α5ey¯α6+α4+α5z¯,limnΠ7n=α4y¯α6+α4+α5z¯,limnΠ8n=α5y¯α6+α4+α5z¯,limnΠ9n=α7z¯α9+α7+α8x¯,limnΠ10n=α8z¯α9+α7+α8x¯,limnΠ11n=α7ez¯α9+α7+α8x¯,limnΠ12n=α8ez¯α9+α7+α8x¯,(43) that is (44) Π1n=α1ex¯α3+(α1+α2)y¯+α1n,Π2n=α2ex¯α3+α1+α2y¯+α1n1,Π3n=α1x¯α3+α1+α2y¯+α2n,Π4n=α2x¯α3+α1+α2y¯+α2n1,Π5n=α4ey¯α6+α4+α5z¯+α2n,Π6n=α5ey¯α6+α4+α5z¯+α2n1,Π7n=α4y¯α6+α4+α5z¯+α3n,Π8n=α5y¯α6+α4+α5z¯+α3n1,Π9n=α7z¯α9+α7+α8x¯+α1n,Π10n=α8z¯α9+α7+α8x¯+α1n1,Π11n=α7ez¯α9+α7+α8x¯+α3n,Π12n=α8ez¯α9+α7+α8x¯+α3n1,(44) where α1n,α1n1,α2n,α2n1,α3n,α3n10 as n. Now, we have system 1.10 of Ref. [Citation8], where A=J|Υ and (45) B(n)=α1nα1n1α2nα2n10010000000α2nα2n1α3nα3n1001000α1nα1n100α3nα3n1000010,(45) where B(n),n. Therefore, about Υ, the limiting system becomes (46) ϑn+11ϑn1ϑn+12ϑn2ϑn+13ϑn3=J|Υϑn1ϑn11ϑn2ϑn12ϑn3ϑn13,(46) which is as J|Υ about Υ.

8. Numerical simulations

In this section, we will present simulation to verify not only obtained results but also exhibits that (Equation7) undergoes a supercritical hopf bifurcation. For instance, if αi(i=1,,9) are 13, 0.24, 8, 12, 0.1, 5, 5,0.14, 4, then condition (Equation22) holds, i.e. (α1+α2)eL1α3+(α1+α2)L2+(α7+α8)eL3α9+(α7+α8)L1+(α1α4+α1α5)eL1L2(α6+(α4+α5)L3)(α3+(α1+α2)L2)+(α4+α5)eL2α6+(α4+α5)L3+(α4α7+α5α7+α4α8)eL2L3(α6+(α4+α5)L3)(α9+(α7+α8)L1)+α1α7eL1L3(α9+(α7+α8)L1)(α3+(α1+α2)L2)+α1α8eL1L2(α9+(α7+α8)L1)(α3+(α1+α2)L2)+(α2α5α8+α1α4α7+α1α5α8+α2α5α7+α2α4α8)eL1L2L3(α9+(α7+α8)L1)(α3+(α1+α2)L2)(α6+(α4+α5)L3)+(α2α5α8+α1α5α8+α2α5α7+α5α1α7)U1U2U3(α9+(α7+α8)L1)(α3+(α1+α2)L2)(α6+(α4+α5)L3)=0.06223205265987121987645<1, which clearly indicate the fact that the unique positive equilibrium point (0.4760299878571522,0.9249913676665756,0.4718569265705974) of (Equation7) is locally stable (see Figure (a–c)). Moreover, for said values, condition (Equation33) also hold, i.e. (α1+α2)eL1=6.681696991393797<(2x¯U1)(α3+(α1+α2)L2)=12.429286853034514, (α4+α5)eL2=3.6342836498120694<(2y¯U2)(α6+(α4+α5)L3)=10.799584645301376, (α7+α8)eL3=4.587592155111493<(2z¯U3)(α9+(α7+α8)L1)=9.412421234484496, which indicates that positive equilibrium point is globally stable (see Figure (d)), and hence, these computations agree with theoretical results. Similarly, for choosing parameters αi(i=1,,9) as 18,0.24,8,12,0.1,5,5,0.4,4, then from Figure (e–g), the unique +ve equilibrium point (0.5869973072136292,0.9252376829323564,0.4861615443150309) of (Equation7) is stable and its corresponding attractor is shown in Figure (h). But if αi(i=1,,9) are 18, 0.24, 8, 20, 0.1, 5, 5,0.4, 4, then from Figure (a–c), the unique positive equilibrium point (0.12206059150567157,3.3039362385056905,0.33608644648845903) of (Equation7) is unstable and in the meantime stable closed curve appeared which is depicted in Figure (d). The appearance of the stable closed curve implies that (Equation7) undergoes a supercritical hopf bifurcation. More bifurcation diagrams subject to x1=0.07, x0=0.2, y1=1.9, y0=1.4, z1=0.9 and  z0=0.4 are plotted in Figure .

Figure 1. Trajectories for (Equation7) with xs,ys,zs(s=1,0) are 1.7, 0.2, 0.9, 1.4, 0.9, 0.24.

Figure 1. Trajectories for (Equation7(7) xn+1=α1e−xn+α2e−xn−1α3+α1yn+α2yn−1,yn+1=α4e−yn+α5e−yn−1α6+α4zn+α5zn−1,zn+1=α7e−zn+α8e−zn−1α9+α7xn+α8xn−1,(7) ) with xs,ys,zs(s=−1,0) are 1.7, 0.2, 0.9, 1.4, 0.9, 0.24.

Figure 2. Trajectories for (Equation7) with xs,ys,zs(s=1,0) are 0.07, 0.2, 1.9, 1.4, 0.9, 0.4.

Figure 2. Trajectories for (Equation7(7) xn+1=α1e−xn+α2e−xn−1α3+α1yn+α2yn−1,yn+1=α4e−yn+α5e−yn−1α6+α4zn+α5zn−1,zn+1=α7e−zn+α8e−zn−1α9+α7xn+α8xn−1,(7) ) with xs,ys,zs(s=−1,0) are 0.07, 0.2, 1.9, 1.4, 0.9, 0.4.

Figure 3. Supercritical N–S bifurcation for (Equation7): (a) αs(s=1,,6) are 18, 0.24, 13, 20, 0.1, 5, 5,0.4, 4, (b) 18, 0.24, 13, 20.5, 0.1, 5, 5,0.4, 4, (c) 18, 0.24, 13, 20.57, 0.1, 5, 5,0.4, 4, (d) 18, 0.24, 13, 21.5, 0.1, 5, 5,0.4, 4, (e) 18, 0.24, 13, 22.5, 0.1, 5, 5,0.4, 4 and (f) 18, 0.24, 13, 23.125, 0.1, 5, 5,0.4, 4.

Figure 3. Supercritical N–S bifurcation for (Equation7(7) xn+1=α1e−xn+α2e−xn−1α3+α1yn+α2yn−1,yn+1=α4e−yn+α5e−yn−1α6+α4zn+α5zn−1,zn+1=α7e−zn+α8e−zn−1α9+α7xn+α8xn−1,(7) ): (a) αs(s=1,…,6) are 18, 0.24, 13, 20, 0.1, 5, 5,0.4, 4, (b) 18, 0.24, 13, 20.5, 0.1, 5, 5,0.4, 4, (c) 18, 0.24, 13, 20.57, 0.1, 5, 5,0.4, 4, (d) 18, 0.24, 13, 21.5, 0.1, 5, 5,0.4, 4, (e) 18, 0.24, 13, 22.5, 0.1, 5, 5,0.4, 4 and (f) 18, 0.24, 13, 23.125, 0.1, 5, 5,0.4, 4.

9. Conclusion

The presented work is about the dynamical properties of the three-directional system of difference equations, that is the extension of the work studied by Bozkurt [Citation5] and Khan and Qureshi [Citation6]. We have proved that the +ve solution {Ωn}n=1 of (Equation7) is bounded and persists, i.e. L1limninfxnlimnsupxnU1, L2limninfynlimnsupynU2, L3limninfznlimnsupznU3, and the set [L1,U1]×[L2,U2]×[L3,U3] where L1=(α1+α2)e((α1+α2)/α3)α3+(α1+α2)((α4+α5)/α6),U1=α1+α2α3,L2=(α4+α5)e((α4+α5)/α6)α6+(α4+α5)((α7+α8)/α9),U2=α4+α5α6,L3=(α7+α8)e((α7+α8)/α9)α9+(α7+α8)((α1+α2)/α3),U3=α7+α8α9 is invariant rectangle. Furthermore, we have proved that (Equation7) has a unique +ve equilibrium point: Υ if e((eU3/L3)(α9/(α7+α8)))(U3+1)eL3((α9/(α7+α8))(eU3/L3)1)U32((eL3/L3)(α9/(α7+α8)))2×ee((eL3/U3)(α9/(α7+α8)))(eL3/L3)(α9/(α7+α8))α3α1+α2(Λ+1)<Λ2, where Λ is defined in (Equation21). By linear stability, we have explored the local dynamics about Υ and proved that it is sink (respectively unstable) if (Equation22) (respectively (Equation23)) holds. By constructing the discrete-time discrete-time Lyapunov function, we explored that Υ of (Equation7) is globally asymptotically stable if (α1+α2)eL1<(2x¯U1)(α3+(α1+α2)L2), (α4+α5)eL2<(2y¯U2)(α6+(α4+α5)L3) and (α7+α8)eL3<(2z¯U3)(α9+(α7+α8)L1) hold. We have also explored the rate of convergence that converges to unique +ve equilibrium Υ. Finally, simulations are presented to verify obtained results. These simulations not only verify our obtained results but also proved that (Equation7) undergoes a supercritical hopf bifurcation.

Acknowledgments

This work was supported by the Higher Education Commission of Pakistan.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

.

References

  • El-Metwally E, Grove EA, Ladas G, et al. On the difference equation xn+1=α1+α2xn−1e−xn. Nonlinear Anal. 2001;47:4623–4634. doi: 10.1016/S0362-546X(01)00575-2
  • Ozturk I, Bozkurt F, Ozen S. On the difference equation xn+1=(α1+α2e−xn)/(α3+xn−1). Appl Math Comput. 2006;181:1387–1393.
  • Papaschinopoulos G, Radin M, Schinas CJ. Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form. Appl Math Comput. 2012;218:5310–5318.
  • Khan AQ. Global dynamical properties of two discrete-time exponential systems. J Taibah Univ Sci. 2019;13(1):790–804. doi: 10.1080/16583655.2019.1635329
  • Bozkurt F. Stability analysis of a nonlinear difference equation. Int J Mod Nonlinear Theory Appl. 2013;2:1–6. doi: 10.4236/ijmnta.2013.21001
  • Khan AQ, Qureshi MN. Behavior of an exponential system of difference equations. Discrete Dyn Nature Soc. 2014;2014:1–9. doi: 10.1155/2014/607281
  • Garić-Demirović M, Kulenović MRS. Dynamics of an anti-competitive two dimensional rational system of difference equations. Sarajevo J Math. 2014;7(19):39–56.
  • Pituk M. More on Poincare's and Perron's theorems for difference equations. J Differ Equ Appl. 2002;8:201–216. doi: 10.1080/10236190211954