553
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Set-valued fixed point results with application to Fredholm-type integral inclusion

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1077-1088 | Received 22 Dec 2019, Accepted 24 Jul 2020, Published online: 10 Aug 2020

Abstract

In this manuscript, using the concept of a couple [f h] called generalized upper-class of type-III and (α,η)β-contraction, multi-valued fixed-point results are established in metric spaces. Our results generalized many results in the current literature. Further our methods can be applicable to the study of consensus problems. For the authenticity of the presented work, example and existence theorem for Fredholm-type integral inclusion are also discussed.

2010 (MOS) SUBJECT CLASSIFICATIONS:

1. Introduction

Fixed-point study for set-valued (SV) mapping first was put forward by Neuman [Citation1] in game theory. Kakutani [Citation2] initiated a fixed-point theory of SV mapping in finite-dimensional spaces. This concept was extended by Bohnenblust and Karlin [Citation3] to infinite-dimensional (Banach) spaces. Nadler [Citation4] generalized the BCP (Banach contraction principle) by presenting the idea of SV contraction known as NCP (Nadler contraction principle), which asserts that in a complete metric space every contraction mapping T:ΞCb(Ξ) has a fixed point, where Cb(Ξ) is collection of non-empty bounded and closed subsets of Ξ. He established fixed-point results in metric space utilizing the iterative method and the notion of the Hausdorff metric.

In 2002, the well-known BCP was extended by Branciari [Citation5] to integral-type contraction. Liu et al. established fixed-point results [Citation6] by extended Branciari [Citation5] fixed-point results with the help of restricted type functions. On the other hand, Akram et al. [Citation7] introduced a novel class of contraction mappings known as A-contraction, which is a proper super-class of Kannan's [Citation8], Bianchini's [Citation9] and Reich's [Citation10] type contractions. Sahaa and Deyb [Citation11] established fixed-point theorems for integral A-type contraction mappings.

Samet et al. [Citation12] announced the idea of α-admissible mappings. Related fixed-point results for α-admissible mappings were considered by Hussain et al. [Citation13]. Salimi et al. [Citation4] improved the concept of (α,ψ)-contractive mappings and α-admissible and studied new fixed-point results for such mappings and provided the main results of Samet et al. [Citation12] and Karapinar and Samet [Citation15] as the corollaries. The concept of α-admissible mapping to MV mapping was extended by Asl et al. [Citation16] and Hussain et al. [Citation17]. Radenovic et al. [Citation18] built-up direct proofs of certain common fixed-point results via weak contractive conditions under different condition of control functions. Chandok et al. [Citation19] studied fixed-point results for αβ-contractive and admissible mappings using the concept of a couple [f h] called generalized upper-class of type II.

Now, we give some basics defined in a metric space (Ξ,ϱ) for SV mappings. Define the mapping H:Cb(Ξ)×Cb(Ξ)R+ for Ξ1,Ξ2Cb(Ξ) by H(Ξ1,Ξ2)=maxsupςΞ1ϱ(ς,Ξ2),supζΞ1ϱ(ζ,Ξ1) where ϱ(Ξ,Ξ1)=inf{ϱ(Ξ,ζ):ζΞ1} and δ(Ξ1,Ξ2)=sup{ϱ(ς,ζ):ςΞ1, ζΞ2}. Geraghty [Citation20] generalized BCP [Citation21] in the following way.

Theorem 1.1

Assume a complete metric space (Ξ,ϱ). Define a mapping S1:ΞΞ. Assume that ∃β:R+[0,1) function such that, for sequence {tq} of positive real numbers which is bounded, β(tq)1 implies tq0 and ϱ(S1ζ,S1ς)β(ϱ(ζ,ς))ϱ(ζ,ς), ∀ ζ,ςΞ. Then S1 has a unique fixed point.

Definition 1.2

[Citation19]

The function h:[0,+)3R is a sub-class of type-II if it is continuous and ζ,ς1h(1,1,ϑ)h(ζ,ς,ϑ).

Definition 1.3

[Citation19]

Let a continuous function f:[0,+)2R, then the couple [f h] is upper-class of type-II , if h be a sub-class of type-II with 0s11f(s1,t1)f(1,t1), and h(1,1,ϑ)f(s1,t1)ϑs1t1.

Definition 1.4

[Citation19]

Let (Ξ,ϱ) be a metric space. Define a mapping S1:ΞΞ. A non-empty subset Q of Ξ is said to be invariant under S1, if S1ζQ, for every ζQ.

Definition 1.5

[Citation19]

Let S1:ΞΞ be a mapping. Moreover, Q be a subset of Ξ, which is invariant under S1 and α:Q×QR+. Then the mapping S1 is an αQ-admissible if α(ζ,ς)1α(S1ζ,S1ς)1, ∀ζ,ςQ.

Φ=κ:κ:R+R+,κ is Lebesgue-integrable,summable for every compact subset ofR+and0ϵ1κ(ς)dς>0 foreach ϵ1>0.

Definition 1.6

Altering distance function is a function ψ:R+R+ fulfilled the following conditions:

$(Ad_1)$

ψ is non-decreasing and continuous;

$(Ad_2)$

ψ1(0)=0.

We signify by Ψ the set of altering distance functions.

Lemma 1.7

[Citation6]

Let κΦ and {ξq}qN is non-negative sequence with limqξq=ξ. Then limq0ξqκ(ς)dς=0ξκ(ς)dς.

Lemma 1.8

[Citation6]

Let κΦ and {ξq}qN is non-negative sequence. Then limq0ξqκ(ς)dς=0limqξq=0.

A-contractions defined by Akram et al. [Citation7] as the following:

Definition 1.9

Let a non-empty set A contain of all functions γ:R3R satisfying:

$(AC_1)$

γ is continuous on R3 ( w.r.t the Euclidean metric on R3), here R3 is the set of all triplets of non-negative real numbers;

$(AC_2)$

κ1kκ2 for some k[0,1) whenever κ1(κ1,κ2,κ2) or κ1(κ2,κ1,κ2) or κ1(κ2,κ2,κ1)κ1,κ2.

Definition 1.10

[Citation7]

A mapping S1 on a metric space (Ξ,ϱ) is said to satisfy A-contraction, if ϱ(S1ζ,S1ς)γ(ϱ(ζ,ς),ϱ(ζ,S1ζ),ϱ(ς,S1ς))ζ,ςΞ, γA.

Lemma 1.11

[Citation22]

Let (Ξ,ϱ) be a metric space. For any χ1,χ2Cb(Ξ), we have ϱ(ξ,χ2)H(χ1,χ2),  ξχ1.

Lemma 1.12

[Citation23]

Assume (Ξ,ϱ) is a metric space. Let {ζq} be a sequence in Ξ such that ϱ(ζq,ζq+1)0 as q. If {ζq} is not a Cauchy sequence, then ∃ϵ1>0 and sequences of positive integers {p(s)} and {q(s)} such that the sequences ϱ(ζp(s),ζq(s)),ϱ(ζp(s)1,ζq(s)+1),ϱ(ζp(s)1,ζq(s)),ϱ(ζp(s)1,ζq(s)+1),ϱ(ζp(s)+1,ζq(s)+1) tend to ϵ1 when s.

Definition 1.13

[Citation14]

Let S1 be a mapping on a metric space (Ξ,ϱ) and let α,η:Ξ×ΞR+ be two mappings. Mapping S1 is an α-admissible w.r.t η if ∀ζ,ςΞ α(ζ,ς)η(ζ,ς)α(S1ζ,S1ς)η(S1ζ,S1ς).

Definition 1.14

[Citation16,Citation17]

Let S1:ΞP(Ξ) be a close valued multi-valued function and α,η:Ξ×ΞR+ be two mappings. Mapping S1 is an α-admissible w.r.t η if ∀ζ,ςΞ the following condition holds α(ζ,ς)η(ζ,ς)α(S1ζ,S1ς)η(S1ζ,S1ς), where α(S1ζ,S1ς)=inf{α(a1,b1):a1S1ζ,b1S1ς};η(S1ζ,S1ς)=sup{η(a1,b1):a1S1ζ,b1S1ς}.

If we take α(ζ,ς)=1, then mapping S1 is called α-admissible and it is called sub-admissible if we take η(ζ,ς)=1.

Definition 1.15

[Citation19]

Let (Ξ,ϱ) be a metric space. Q a non-empty subset of Ξ, S1:ΞΞ and α:Q×QR+. A mapping S1 is said to be αβ-contractive if ∃β:R+[0,1) with the property that tq0 whenever β(tq)1,ζ,ςQ, the following condition holds: h(α(ζ,S1ζ), α(ς,S1ς), ψ(ϱ(S1ζ,S1ς)))f(β(ϱ(ζ,ς)), ψ(ϱ(ζ,ς))), where couple [f h] is a upper-class of type-II and ψΨ.

Motivated from the above results, using the idea of Chandok et al. [Citation19] we establish fixed results for SV mapping via (α,η)β-contraction, (α,η)β -integral-type, (α,η,A)β -integral-type contraction. It is indicating that in our approach the implication β(γn)1γn0 holds for un-bounded sequences (γn). Therefore, our result generalized the results of Hussain et al. [Citation13] and Chandok et al. [Citation19] for SV mapping. Also generalized and extended the result of Liu et al. [Citation6] for SV mapping. As an application existence theorem for Fredholm-type integral inclusion is also established. For some results on the existence of the solutions of nonlinear integral equations and qualitative behaviours of solutions of nonlinear integro-differential equations, we referee the readers to the papers of Deep et al. [Citation24], Tunç [Citation25], Tunç and Tunç [Citation26–29] and the bibliography of these papers.

2. Fixed-point results

In this section, we present a few definitions and new notations which will be utilized throughout in this work. Set h(ϑ1):h(η(ζ,ς),η(ζ,ς),ϑ1) throughout the paper.

Definition 2.1

α,η:Ξ×ΞR+ be two mappings. h:[0,+)3R is a function of sub-class of type-III if it is continuous and α(ζ,ς)η(ζ,ς)h(η(ζ,ς),η(ζ,ς),ϑ1)h(α(ζ,ς),α(ζ,ς),ϑ2),where ϑ1ϑ2.

Definition 2.2

Let η:Ξ×ΞR+ and f:[0,+)2R be a mapping. The couple [f h] is upper-class of type-III if f is a continuous function, h is a sub-class of type-III with 0s11f(s1,t1)f(η(ζ,ς),t1), and h(η(ζ,ς),η(ζ,ς),ϑ)f(s1,t1)ϑs1t1.

Definition 2.3

Assume (Ξ,ϱ) is a metric space and let S1:ΞΞ be a mapping. A non-empty subset Q of Ξ is said to be invariant under S1 if S1ζQ, for every ζQ.

Definition 2.4

Let α,η:Q×QR+ be two functions and S1:ΞCb(Ξ) be a mapping, Q a non-empty subset of Ξ which is invariant under S1. Mapping S1 is an αQ-admissible if α(ζ,ς)η(ζ,ς) implies α(S1ζ,S1ς)η(S1ζ,S1ς), ∀ζ,ςQ.

Definition 2.5

Assume (Ξ,ϱ) is a metric space, Q is a non-empty subset of Ξ, S1:ΞCb(Ξ) and α:Q×QR+. A mapping S1 is said to be αβ-contractive if ∃β:R+[0,1) with the property that tq0 whenever β(tq)1 as well as ∀ζ,ςQ, the following condition holds: (1) h(α(ζ,S1ζ),α(ς,S1ς),ψ(H(S1ζ,S1ς)))f(β(ϱ(ζ,ς)),ψ(ϱ(ζ,ς))),(1) here couple [fh] is a upper-class of type-III and ψΨ.

Theorem 2.6

Assume (Ξ,ϱ) is a complete metric space, Q is a non-empty closed subset of Ξ, mapping S1:ΞCb(Ξ) is an αQ-admissible and Q is invariant under S1. Further assume that S1 is an αβ-admissible contractive mapping.

  1. There exists ζ0Q and ζ1S1ζ0 such that α(ζ0,ζ1)η(ζ0,ζ1);

  2. For a sequence {ζq} in Q converging to ζQα(ζq,ζq+1)η(ζq,ζq+1), we have α(ζq,ζ)η(ζq,ζ) qN. Then S1 has a fixed point.

Proof.

Let ζ0Q and ζ1S1ζ0 be such that α(ζ0,ζ1)η(ζ0,ζ1). Since S1 is an α-admissible mapping, thus α(S1ζ0,S1ζ1)η(S1ζ0,S1ζ1). Therefore from (Equation1), we have h(α(ζ0,S1ζ0),α(ζ1,S1ζ1),ψ(H(S1ζ0,S1ζ1)))f(β(ϱ(ζ0,ζ1)),ψ(ϱ(ζ0,ζ1))). If ζ0=ζ1, then we have nothing to prove. Let ζ0ζ1. If ζ1S1ζ1, then ζ1 is a fixed point of S1. Let ζ1S1ζ1. Then using Lemma 1.11 and property of h, we get 0<h(ψ(ϱ(ζ1,S1ζ1)))h(α(ζ1,S1ζ1),α(ζ1,S1ζ1),ψ(H(S1ζ0,S1ζ1))). From above two equation, we get 0<h(ψ(ϱ(ζ1,S1ζ1)))f(β(ϱ(ζ0,ζ1)),ψ(ϱ(ζ0,ζ1))). Using upper-class of type-III, it follows that 0<ψ(ϱ(ζ1,S1ζ1))β(ϱ(ζ0,ζ1))ψ(ϱ(ζ0,ζ1)). From property of ψ and β, we have 0<ϱ(ζ1,S1ζ1)<ϱ(ζ0,ζ1). Hence ∃ζ2S1ζ1 such that 0<h(ψ(ϱ(ζ1,ζ2)))h(α(S1ζ0,S1ζ1),α(S1ζ0,S1ζ1),ψ(H(S1ζ0,S1ζ1)))f(β(ϱ(ζ0,ζ1)),ψ(ϱ(ζ0,ζ1))). This relation implies that 0<ψ(ϱ(ζ1,ζ2))β(ϱ(ζ0,ζ1))ψ(ϱ(ζ0,ζ1)). It is clear that ζ1ζ2 α(ζ1,ζ2)η(ζ1,ζ2). Since S1 is an α-admissible mapping, thus α(S1ζ1,S1ζ2)η(S1ζ1,S1ζ2) ψ(ϱ(ζ1,ζ2))β(ϱ(ζ0,ζ1))ψ(ϱ(ζ0,ζ1))<ψ(ϱ(ζ0,ζ1)) If ζ2S1ζ2, then ζ2 is a fixed point of S1. Let ζ2S1ζ2. Then 0<h(ψ(ϱ(ζ2,S1ζ2)))h(α(S1ζ1,S1ζ2),α(S1ζ1,S1ζ2),ψ(H(S1ζ1,S1ζ2)))f(β(ϱ(ζ1,ζ2)),ψ(ϱ(ζ1,ζ2))). Hence ∃ζ3S1ζ2 such that 0<h(ψ(ϱ(ζ2,ζ3)))h(α(S1ζ1,S1ζ2),α(S1ζ1,S1ζ2),ψ(H(S1ζ1,S1ζ2)))f(β(ϱ(ζ1,ζ2)),ψ(ϱ(ζ1,ζ2))). This relation implies that 0<ψ(ϱ(ζ2,ζ3))β(ϱ(ζ1,ζ2))ψ(ϱ(ζ1,ζ2)). It is clear that ζ2ζ3 α(ζ2,ζ3)η(ζ2,ζ3) Thus α(S1ζ2,S1ζ3)η(S1ζ2,S1ζ3) and ψ(ϱ(ζ1,ζ2))β(ϱ(ζ1,ζ2))ψ(ϱ(ζ1,ζ2))<ψ(ϱ(ζ1,ζ2)). Following the same way, we get a sequence {ζq} in Q such that ζqS1ζq1 ζqζq+1, α(ζq,ζq+1)η(ζq,ζq+1). Thus α(S1ζq,S1ζq+1)η(S1ζq,S1ζq+1) (2) ψ(ϱ(ζq,ζq+1))β(ϱ(ζq,ζq+1))ψ(ϱ(ζq,ζq+1))ψ(ϱ(ζq,ζq+1)).ψ(ϱ(ζq,ζq+1))ψ(ϱ(ζq1,ζq)),(2) Hence, we have ϱ(ζq,ζq+1)ϱ(ζq1,ζq),for every qN. Therefore, the sequence ϱ(ζq,ζq+1) is decreasing so ∃ some r>0, such that limqϱ(ζq,ζq+1)=r. Letting q in (Equation2), we have limqβ(ϱ(ζq1,ζq))=1, and this implies that limqϱ(ζq,ζq+1)=0. Presently, we will demonstrate that {ζq} is a Cauchy sequence. Assume, to the contrary, that {ζq} is not a Cauchy sequence. By Lemma 1.12 ∃ϵ1>0 for which we can discover sub-sequences {ζq(s)} and {ζp(s)} of {ζq} with ns>ms>s such that (3) limsϱ(ζq(s),ζp(s))=limsϱ(ζq(s)1,ζp(s)1)=ϵ1.(3) Setting ζ=ζp(s)1 and ς=ζq(s)1 in (Equation1), we obtain h(α(ζp(s)1,ζp(s)),α(ζq(s)1,ζq(s)1),ψ(ϱ(ζq(s),ζp(s))))h(α(ζp(s)1,ζp(s)),α(ζq(s)1,ζq(s)1),ψ(H(S1ζq(s)1,S1ζp(s)1)))f(β(ϱ(ζp(s)1,ζq(s)1)),ψ(ϱ(ζp(s)1,ζq(s)1)))=β(ϱ(ζp(s)1,ζq(s)1))ψ(ϱ(ζp(s)1,ζq(s)1)), which implies that (4) ψ(ϱ(ζq(s),ζp(s)))β(ϱ(ζp(s)1,ζq(s)1))ψ(ϱ(ζp(s)1,ζq(s)1)),ψ(ϱ(ζq(s),ζp(s)))ψ(ϱ(ζp(s)1,ζq(s)1))β(ϱ(ζp(s)1,ζq(s)1))<1.(4) Letting s and using (Equation3) and (Equation4) we get limsϱ(ζq(s)1,ζp(s)1)=0, which is a contradiction. This demonstrates {ζq} is a Cauchy sequence and hence is convergent in the complete set Q. Hence ζqϑQ as q.

Next, we guess that condition (b) holds. In this case, if, α(ζq,ϑ)η(ζq,ϑ), then α(S1z,S1ζq)η(S1ζq,S1ϑ). Hence, we obtain h(η(ζq,S1ζq),η(z,S1z),ψ(ϱ(ζq+1,S1ϑ)))h(α(ζq,S1ζq),α(ϑ,S1ϑ),ψ(ϱ(S1ζq,S1ϑ)))f(β(ϱ(ζq,ϑ)),ψ(ϱ(ζq,ϑ))), which implies that ψ(ϱ(ζq+1,S1ϑ))β(ϱ(ζq,ϑ))ψ(ϱ(ζq,ϑ)). Taking q and using the properties of ψ and β, we have ϱ(S1ϑ,ϑ)=0, that is, ϑS1ϑ.

The methods can be applicable to the study of consensus problems for details, see [Citation30,Citation31].

The following corollaries can be deduced from Theorem 2.6.

Let h(ζ,ς,ϑ)=ζςϑ, f(ζ,ς)=ζς, and Q=Ξ, then

Corollary 2.7

Let (Ξ,ϱ) is a complete metric space, S1:ΞCb(Ξ) is an α-admissible mapping, such that α(ζ,S1ζ)α(ς,S1ς)ψ(H(S1ζ,S1ς))β(ϱ(ζ,ς))ψ(ϱ(ζ,ς)).

  1. There exists ζ0Q and ζ1S1ζ0 such that α(ζ0,ζ1)η(ζ0,ζ1);

  2. For a sequence {ζq} in Q converging to ζQ α(ζq,ζq+1)η(ζq,ζq+1), we have α(ζq,ζ)η(ζq,ζ) qN. Then S1 has a fixed point.

Consider h(ζ,ς,ϑ)=ζςϑ, f(ζ,ς)=ζς, ψ(t)=t and Q=Ξ, then

Corollary 2.8

Assume (Ξ,ϱ) is a complete metric space, S1:ΞCb(Ξ) is an α-admissible mapping, such that α(ζ,S1ζ)α(ς,S1ς)H(S1ζ,S1ς)β(ϱ(ζ,ς))ψ(ϱ(ζ,ς)).

  1. There exists ζ0Q and ζ1S1ζ0 such that α(ζ0,ζ1)η(ζ0,ζ1);

  2. For a sequence {ζq} in Q converging to ζQ α(ζq,ζq+1)η(ζq,ζq+1) , we have α(ζq,ζ)η(ζq,ζ)qN. Then S1 has a fixed point.

Let h(ζ,ς,ϑ)=ζςϑ, f(ζ,ς)=ζς, Q=Ξ, ψ(t)=t, α(ζ,ς)=1 then

Corollary 2.9

Assume (Ξ,ϱ) is a complete metric space, S1:ΞCb(Ξ) is an η-subadmissible mapping, such that ψ(H(S1ζ,S1ς))β(ϱ(ζ,ς))ψ(ϱ(ζ,ς)).

  1. There exists ζ0Q and ζ1S1ζ0 such that η(ζ0,ζ1)1;

  2. For a sequence {ζq} in Q converging to ζQ η(ζq,ζq+1)1, we have η(ζq,ζ)1  qN. Then S1 has a fixed point.

Let h(ζ,ς,ϑ)=(ϑ+l)ζς,l>1 f(ζ,ς)=ζς+l, ψ(t)=t and Q=Ξ, then

Corollary 2.10

Assume (Ξ,ϱ) is a complete metric space., S1:ΞCb(Ξ) is an α-admissible mapping, such that (ψ(H(S1ζ,S1ς))+l)α(ζ,S1ζ)α(ς,S1ς)β(ϱ(ζ,ς))ψ(ϱ(ζ,ς))+l.

  1. There exists ζ0Q and ζ1S1ζ0 such that α(ζ0,ζ1)η(ζ0,ζ1);

  2. For a sequence {ζq} in Q converging to ζQ α(ζq,ζq+1)η(ζq,ζq+1), we have α(ζq,ζ)η(ζq,ζ)qN. Then S1 has a fixed point.

Let h(ζ,ς,ϑ)=ζmςnϑp, m,n,pN, f(ζ,ς)=ζpςp, ψ(t)=t and Q=Ξ, then

Corollary 2.11

Assume (Ξ,ϱ) is a complete metric space, S1:ΞCb(Ξ) is an α-admissible mapping, such that (α(ζ,S1ζ))m(α(ς,S1ς))n(ψ(H(S1ζ,S1ς)))p(β(ϱ(ζ,ς))ψ(ϱ(ζ,ς)))p.

  1. There exists ζ0Q and ζ1S1ζ0 such that α(ζ0,ζ1)η(ζ0,ζ1);

  2. For a sequence {ζq} is a sequence in Q converging to ζQ α(ζq,ζq+1)η(ζq,ζq+1), we have α(ζq,ζ)η(ζq,ζ)  qN. Then S1 has a fixed point.

Let h(ζ,ς,ϑ)=(ζς+l)ϑ, l>1, f(ζ,ς)=(1+m)ζς, m>1 and Q=Ξ then

Corollary 2.12

Assume (Ξ,ϱ) is a complete metric space, S1:ΞCb(Ξ) is an α-admissible mapping, such that (α(ζ,S1ζ)α(ς,S1ς)+l)ψ(H(S1ζ,S1ς))(1+m)β(ϱ(ζ,ς))ψ(ϱ(ζ,ς)).

  1. There exists ζ0Q and ζ1S1ζ0 such that α(ζ0,ζ1)η(ζ0,ζ1);

  2. For a sequence {ζq} in Q converging to ζQ α(ζq,ζq+1)η(ζq,ζq+1), we have α(ζq,ζ)η(ζq,ζ) qN. Then S1 has a fixed point.

Consider h(ζ,ς,ϑ)=((ζm+ζnςp+ςq)/3)ϑk, m,n,p,q,kN, f(ζ,ς)=ζkςk and Q=Ξ, then

Corollary 2.13

Assume (Ξ,ϱ) is a complete metric space, S1:ΞCb(Ξ) is an α-admissible mapping, such that (α(ζ,S1ζ))m+(α(ζ,S1ζ))n(α(ς,S1ς))p+(ψ(H(S1ζ,S1ς)))q3(β(ϱ(ζ,ς)))k(ψ(ϱ(ζ,ς)))k.

  1. There exists ζ0Q and ζ1S1ζ0 such that α(ζ0,ζ1)η(ζ0,ζ1);

  2. For a sequence {ζq} in Q converging to ζQ α(ζq,ζq+1)η(ζq,ζq+1), we have α(ζq,ζ)η(ζq,ζ) qN. Then S1 has a fixed point.

Definition 2.14

Assume (Ξ,ϱ) is a metric space, Q is a non-empty subset of Ξ, S1:ΞCb(Ξ) and α:Q×QR+. A mapping S1 is said to be αβ-integral-type contractive mapping if ∃β:R+[0,1) with the property that tq0 whenever β(tq)1 as well as ∀ζ,ςQ, the following condition holds: (5) hα(ζ,S1ζ),α(ς,S1ς),ψ0δ(S1ζ,S1ς)κ(t)dtfβ(ϱ(ζ,ς)),ψγ1(ϱ(ζ,ς))0ϱ(ζ,S1ζ)κ(t)dt+γ2(ϱ(ζ,ς))0ϱ(ς,S1ς)κ(t)dt+γ3(ϱ(ζ,ς))0ϱ(ζ,ς)κ(t)dt,(5) where couple [f h] is a upper-class of type-III and ψΨ, κΦ and γ1,γ2,γ3:R+[0,1) are functions with (6) γ1(t)+γ2(t)+γ3(t)<1, tR+,(6) (7) lim supst[γ1(s)+γ2(s)+γ3(s)]<1 t>0.(7)

Theorem 2.15

Assume (Ξ,ϱ) is a complete metric space, Q be a non-empty closed subset of Ξ, S1:ΞCb(Ξ) is an αQ-admissible mapping and Q is invariant under S1. Further assume that S1 is an αβ-admissible integral-type contractive mapping such that the following conditions hold:

  1. There exists ζ0Q and ζ1S1ζ0 such that α(ζ0,ζ1)η(ζ0,ζ1);

  2. For a sequence {ζq} in Q converging to ζQ α(ζq,ζq+1)η(ζq,ζq+1)  qN, we have α(ζq,ζ)η(ζq,ζ)qN. Then S1 has a fixed point.

Proof.

Let ζ0Q and ζ1S1ζ0 be such that α(ζ0,ζ1)η(ζ0,ζ1). Since S1 is an α-admissible mapping, then α(S1ζ0,S1ζ1)η(S1ζ0,S1ζ1). Therefore from (Equation5), we have hα(ζ0,S1ζ0),α(ζ1,S1ζ1),ψ0δ(S1ζ0,S1ζ1)κ(t)dtfβ(ϱ(ζ0,ζ1)),ψγ1(ϱ(ζ0,ζ1))0ϱ(ζ0,S1ζ0)κ(t)dt+γ2(ϱ(ζ0,ζ1))0ϱ(ζ1,S1ζ1)κ(t)dt. If ζ0=ζ1, then we have nothing to prove. Let ζ0ζ1. If ζ1S1ζ1, then ζ1 is a fixed point of S1. Let ζ1S1ζ1. Then using property of h, we have 0<hψ0ϱ(ζ1,S1ζ1)κ(t)dthα(ζ0,S1ζ0),α(ζ1,S1ζ1),0δ(S1ζ0,S1ζ1)ψ0δ(S1ζ0,S1ζ1)κ(t)dt. From the above two equations, it follows that 0<hψ0ϱ(ζ1,S1ζ1)κ(t)dtfβ(ϱ(ζ0,ζ1)),ψγ1(ϱ(ζ0,ζ1))0ϱ(ζ0,S1ζ0)κ(t)dt+γ2(ϱ(ζ0,ζ1))0ϱ(ζ1,S1ζ1)κ(t)dt+γ3(ϱ(ζ0,ζ1))0ϱ(ζ0,ζ1)κ(t)dt. Using upper-class of type-III , we derive that 0<ψ0ϱ(ζ1,S1ζ1)κ(t)dtβϱ(ζ0,ζ1)ψγ1(ϱ(ζ0,ζ1))0ϱ(ζ0,S1ζ0)κ(t)dt+γ2(ϱ(ζ0,ζ1))0ϱ(ζ1,S1ζ1)κ(t)dt+γ3(ϱ(ζ0,ζ1))0ϱ(ζ0,ζ1)κ(t)dt. Similarly, using properties of β and ψ, we have 0<0ϱ(ζ1,S1ζ1)κ(t)dtγ1(ϱ(ζ0,ζ1))0ϱ(ζ0,S1ζ0)κ(t)dt+γ2(ϱ(ζ0,ζ1))0ϱ(ζ1,S1ζ1)κ(t)dt+γ3(ϱ(ζ0,ζ1))0ϱ(ζ0,ζ1)κ(t)dt. Using Equation (Equation6) and Lemma 1.11 we have 0<0ϱ(ζ1,S1ζ1)κ(t)dt0ϱ(ζ0,ζ1)κ(t)dt. Hence ∃ζ2S1ζ1 such that 0<hψ0ϱ(ζ1,ζ2)κ(t)dthα(S1ζ0,S1ζ1),α(S1ζ0,S1ζ1),ψ0δ(S1ζ0,S1ζ1)κ(t)dtfβ(ϱ(ζ0,ζ1)),ψγ1(ϱ(ζ0,ζ1))0ϱ(ζ0,S1ζ0)κ(t)dt+γ2(ϱ(ζ0,ζ1))0ϱ(ζ1,S1ζ1)κ(t)dt+γ3(ϱ(ζ0,ζ1))0ϱ(ζ0,ζ1)κ(t)dt, which implies that 0<ψ0ϱ(ζ1,ζ2)κ(t)dtβϱ(ζ0,ζ1)ψγ1(ϱ(ζ0,ζ1))0ϱ(ζ0,S1ζ0)κ(t)dt+γ2(ϱ(ζ0,ζ1))0ϱ(ζ1,S1ζ1)κ(t)dt+γ3(ϱ(ζ0,ζ1))0ϱ(ζ0,ζ1)κ(t)dt. It is clear that ζ1ζ2 α(ζ1,ζ2)η(ζ1,ζ2), Thus α(S1ζ1,S1ζ2)η(S1ζ1,S1ζ2)ψ0ϱ(ζ1,ζ2)κ(t)dtβϱ(ζ0,ζ1)ψγ1(ϱ(ζ0,ζ1))0ϱ(ζ0,S1ζ0)κ(t)dt+γ2(ϱ(ζ0,ζ1))0ϱ(ζ1,S1ζ1)κ(t)dt+γ3(ϱ(ζ0,ζ1))0ϱ(ζ0,ζ1)κ(t)dtψγ1(ϱ(ζ0,ζ1))0ϱ(ζ0,S1ζ0)κ(t)dt+γ2(ϱ(ζ0,ζ1))0ϱ(ζ1,S1ζ1)κ(t)dt+γ3(ϱ(ζ0,ζ1))0ϱ(ζ0,ζ1)κ(t)dt. If ζ2S1ζ2, then ζ2 is a fixed point of S1. Let ζ2S1ζ2. Then, we have 0<hψ0ϱ(ζ2,S1ζ2)κ(t)dthα(S1ζ1,S1ζ2),α(S1ζ1,S1ζ2),ψ0δ(S1ζ1,S1ζ2)κ(t)dtfβ(ϱ(ζ1,ζ2)),ψγ1(ϱ(ζ1,ζ2))0ϱ(ζ1,S1ζ1)κ(t)dt+γ2(ϱ(ζ1,ζ2))0ϱ(ζ2,S1ζ2)κ(t)dt+γ3(ϱ(ζ1,ζ2))0ϱ(ζ1,ζ2)κ(t)dt.βϱ(ζ1,ζ2)ψγ1(ϱ(ζ1,ζ2))0ϱ(ζ1,S1ζ1)κ(t)dt+γ2(ϱ(ζ1,ζ2))0ϱ(ζ2,S1ζ2)κ(t)dt+γ3(ϱ(ζ1,ζ2))0ϱ(ζ1,ζ2)κ(t)dt. Using property of β, ψ and Equation (Equation6), we get 0<0ϱ(ζ2,S1ζ2)κ(t)dt0ϱ(ζ1,ζ2)κ(t)dt. Hence, ∃ζ3S1ζ2 such that 0<hψ0ϱ(ζ2,ζ3)κ(t)dthα(S1ζ1,S1ζ2),αS1ζ1,S1ζ2,0δ(S1ζ1,S1ζ2)ψ0δ(S1ζ1,S1ζ2)κ(t)dtfβϱ(ζ1,ζ2),ψγ1(ϱ(ζ1,ζ2))0ϱ(ζ1,S1ζ1)κ(t)dt+γ2(ϱ(ζ1,ζ2))0ϱ(ζ2,S1ζ2)κ(t)dt+γ3(ϱ(ζ1,ζ2))0ϱ(ζ1,ζ2)κ(t)dt. This inequality gives that 0<ψ0ϱ(ζ2,ζ3)κ(t)dtβϱ(ζ1,ζ2)ψγ1(ϱ(ζ1,ζ2))0ϱ(ζ1,S1ζ1)κ(t)dt+γ2(ϱ(ζ1,ζ2))0ϱ(ζ2,S1ζ2)κ(t)dt+γ3(ϱ(ζ1,ζ2))0ϱ(ζ1,ζ2)κ(t)dt. It is clear that ζ2ζ3α(ζ2,ζ3)η(ζ2,ζ3) Thus, we obtain α(S1ζ2,S1ζ3)η(S1ζ2,S1ζ3)0<ψ0ϱ(ζ2,ζ3)κ(t)dtβϱ(ζ1,ζ2)ψγ1(ϱ(ζ1,ζ2))0ϱ(ζ1,S1ζ1)κ(t)dt+γ2(ϱ(ζ1,ζ2))0ϱ(ζ2,S1ζ2)κ(t)dt+γ3(ϱ(ζ1,ζ2))0ϱ(ζ1,ζ2)κ(t)dt. Continuing this procedure in last, we get a sequence {ζq} in Q such that ζqS1ζq1 ζqζq+1, α(ζq,ζq+1)η(ζq,ζq+1). Thus, it follows that α(S1ζq,S1ζq+1)η(S1ζq,S1ζq+1) ψ0ϱ(ζq,ζq+1)κ(t)dtβϱ(ζn,ζq+1)ψγ1(ϱ(ζq,ζq+1))0ϱ(ζq,S1ζq)κ(t)dt+γ2(ϱ(ζq,ζq+1))0ϱ(ζq+1,S1ζq+1)κ(t)dt+γ3(ϱ(ζq,ζq+1))0ϱ(ζq,ζq+1)κ(t)dtψγ1(ϱ(ζq,ζq+1))0ϱ(ζq,S1ζq)κ(t)dt+γ2(ϱ(ζq,ζq+1))0ϱ(ζq+1,S1ζq+1)κ(t)dt+γ3(ϱ(ζq,ζq+1))0ϱ(ζn,ζq+1)κ(t)dt. (8) ψ0ϱ(ζq,ζq+1)κ(t)dtβϱ(ζq,ζq+1)ψ0ϱ(ζq,ζq+1)κ(t)dtψ0ϱ(ζq,ζq+1)κ(t)dt.(8) Using property of ψ and β, we get 0ϱ(ζq,ζq+1)κ(t)dt0(ϱ(ζq1,ζq)κ(t)dt. Therefore, the sequence 0ϱ(ζq,ζq+1)κ(t)dt is decreasing so ∃ some r>0, such that limq0ϱ(ζq,ζq+1)κ(t)dt=r. Letting q in (Equation8), we have limqβ(ϱ(ζq1,ζq))=1, and this implies that limqϱ(ζq,ζq+1)=0. Presently, we will demonstrate that {ζq} is a Cauchy sequence. Assume, to the contrary, that {ζq} is not a Cauchy sequence. By Lemma 1.12 ∃ϵ1>0 for which we can discover sub-sequences {ζq(s)} and {ζp(s)} of {ζq} with ns>ms>s such that (9) limsϱ(ζq(s),ζp(s))=limsϱ(ζq(s)1,ζp(s)1)=ϵ1.(9) Setting ζ=ζp(s)1 and ς=ζq(s)1 in (Equation5), we obtain h(α(ζp(s)1,S1ζp(s)1),α(ζq(s)1,S1ζq(s)1),ψ0δ(S1ζq(s)1,S1ζp(s)1)κ(t)dtfβϱ(ζp(s)1,ζq(s)1),ψγ1(ϱ(ζp(s)1,ζq(s)1))0ϱ(ζp(s),S1ζp(s))κ(t)dt+γ2(ϱ(ζp(s)1,ζq(s)1))0ϱ(ζq(s),S1ζq(s))κ(t)dt+γ3(ϱ(ζp(s)1,ζq(s)1))0ϱ(ζp(s),ζq(s))κ(t)dtβϱ(ζp(s)1,ζq(s)1)ψγ1(ϱ(ζp(s)1,ζq(s)1))0ϱ(ζp(s),S1ζp(s))κ(t)dt+γ2(ϱ(ζp(s)1,ζq(s)1))0ϱ(ζq(s),S1ζq(s))κ(t)dt+γ3(ϱ(ζp(s)1,ζq(s)1))0ϱ(ζp(s),ζq(s))κ(t)dt, which implies (10) ψ0ϱ(ζq(s),ζp(s))κ(t)dtβϱ(ζp(s)1,ζq(s)1)ψγ1(ϱ(ζp(s)1,ζq(s)1))0ϱ(ζp(s),S1ζp(s))κ(t)dt+γ2(ϱ(ζp(s)1,ζq(s)1))0ϱ(ζq(s),S1ζq(s))κ(t)dt+γ3(ϱ(ζp(s)1,ζq(s)1))0ϱ(ζp(s),ζq(s))κ(t)dt,ψ(0ϱ(ζq(s),ζp(s))κ(t)dt)ψ(0ϱ(ζq(s),ζp(s))κ(t)dt)β(ϱ(ζp(s)1,ζq(s)1))<1.(10) Letting s and utilizing (Equation9) and (Equation10) we get limsϱ(ζq(s)1,ζp(s)1)=0, which is a contradiction. This exhibits {ζq} is a Cauchy sequence and henceforth is convergent in the complete set Q. Thus ζqϑQ as q.

Next, we Assume that condition (b) holds. In this manner, α(ζq,ϑ)η(ζq,ϑ) then α(S1ϑ,S1ζq)η(S1ζq,S1ϑ), we have hψ0ϱ(ζq+1,S1ϑ)κ(t)dthα(ζq,S1ζq),α(ϑ,S1ϑ),0ϱ(ζq+1,S1z)ψ0ϱ(ζq+1,S1z)κ(t)dtfβϱ(ζq,ϑ),ψϱ(ζq,ϑ), which implies that ψ0ϱ(ζq+1,S1ϑ)κ(t)dtβϱ(ζq,ϑ)ψγ1(ϱ(ζq,ϑ))0ϱ(ζq,S1ζq)κ(t)dt+γ2(ϱ(ζq,ϑ))0ϱ(ζq+1,S1ζq+1)κ(t)dt+γ3(ϱ(ζq,ϑ))0ϱ(ζq,ϑ)κ(t)dt. Taking q and using the properties of ψ and β, we have d(S1ϑ,ϑ)=0, that is, ϑS1ϑ.

Definition 2.16

Assume (Ξ,ϱ) is a metric space. Q is a non-empty subset of Ξ, S1:ΞCb(Ξ) and α:Q×QR+ are mappings. A mapping S1 is said to be (α,η,A)β-admissible integral-type contractive if ∃β:R+[0,1) with the property that tq0 whenever β(tq)1 as well as ∀ζ,ςQ, the following condition holds: hα(ζ,S1ζ),α(ς,S1ς),ψ0H(S1ζ,S1ς)κ(t)dtfβ(ϱ(ζ,ς)),ψγ0ϱ(ζ,S1ζ)κ(t)dt,0ϱ(ς,S1ς)κ(t)dt,0ϱ(ζ,ς)κ(t)dt, where γA and the couple [f h] is a upper-class of type-III and ψΨ.

Similarly, we can prove the following theorem for (α,η,A)β contraction.

Theorem 2.17

Assume (Ξ,ϱ) is a complete metric space. Q is a non-empty closed subset of Ξ, S1:ΞCb(Ξ) is an αQ-admissible mapping and Q is invariant under S1. Further assume that S1 is an (α,η,A)β-admissible integral-type contractive mapping.

  1. There exists ζ0Q and ζ1S1ζ0 such that α(ζ0,ζ1)η(ζ0,ζ1);

  2. For a sequence {ζq} in Q converging to ζQ α(ζq,ζq+1)η(ζq,ζq+1)qN, we have α(ζq,ζ)η(ζq,ζ)qN. Then S1 has a fixed point.

Example 2.18

Let Ξ=[2,) and define a mapping ϱ:Ξ×ΞR+ by, ϱ(ζ,ς)=|ζς|. Then (Ξ,ϱ) is a complete metric space. Let S1:ΞCb(Ξ) and ψ:R+R+, α,η:Ξ×ΞR+ defined by, S1(ζ)={2}if ζ[2,4]{0}if ζ>4.α(ζ,ς)=3if ζ,ς[2,4]0if ζ,ςR+[2,4].η(ζ,ς)=1if ζ,ς[2,4]0ifζ,ςR+[2,4].ψ(t)=t2. If ζ,ς[2,4], then by definitions of α and η we have α(S1ζ,S1ς)=α({2},{2})=3 and η(S1ζ,S1ς)=η({2},{2}=1. Therefore, it follows that α(ζ,ς)η(ζ,ς)α(S1ζ,S1ς)η(S1ζ,S1ς). Clearly in other cases, it follows that α(ζ,ς)η(ζ,ς)α(S1ζ,S1ς)η(S1ζ,S1ς). Hence, S1 is an α-admissible function w.r.t η  ζ,ςΞ

For all ζ,ςΞ we discuss the following cases:

(1) If ζ,ς[2,4], then (α(ζ,S1ζ))2(α(ς,S1ς))2(ψ(H(S1ζ,S1ς)))2=(α([2,4],3))2(α([2,4],3))2(H({2},{2}))4=0β(ϱ(ζ,ς))ψ(ϱ(ζ,ς)). If ζ[2,4] and ς>4, then (α(ζ,S1ζ))2(α(ς,S1ς))2(ψ(H(S1ζ,S1ς))2=(α([2,4],{2}))2(α((2,),{0}))2(H({2},{0}))4=0β(ϱ(ζ,ς))ψ(ϱ(ζ,ς)). If ς[2,4] and ζ>4, then (α(ζ,S1ζ))2(α(ς,S1ς))2(ψ(H(S1ζ,S1ς)))2=(α((4,),{0}))2(α([2,4],{2})))2(H({0},{2}))4=0β(ϱ(ζ,ς))ψ(ϱ(ζ,ς)). The case ζ>4 and ς>4 is easy to calculate. So in all cases by defining h(ζ,ς,ϑ)=ζ2ς2ϑ2, and f(s,t)=st, we have h(α(ζ,S1ζ),α(ς,S1ς),ψ(H(S1ζ,S1ς)))f(β(ϱ(ζ,ς)),ψ(ϱ(ζ,ς))). Thus, S1 has a fixed point.

3. Application

SV fixed-point results are explored extensively and have interesting applications in integral and differential inclusion [Citation32–38]. In this section, we derive sufficient conditions for the solutions of Fredholm-type integral inclusion. For this let Ξ=C[κ,υ] be the set of all continuous function defined on [κ,υ]. Define ϱ:Ξ×ΞR+, by ϱ(ζ,ς)=supt1[κ,υ]|ζς|, is a complete metric space on Ξ. Consider the integral inclusion (11) ζ(t1)φ(t1)+κυW(t1,s1,ζ(s1))ds1,t1[κ,υ],(11) where W:[κ,υ]×[κ,υ]×RPcv(R) where Pcv(R) is the class of non-empty compact and convex subsets of R. For each ζC([κ,υ],R) the operator W(.,.ζ) is lower-semi continuous. Further the function φ:[κ,υ]R is continuous.

Define T:C([κ,υ],R)Cb(C[κ,υ],R) by Tζ(t1)={uC([κ,υ],R):uφ(t1)+κυW(t1,s1,ζ(s1))ds1}, ζC([κ,υ],R), and set Wζ:W(t1,s1,ζ(s1)),t1,s1[κ,υ]. Now, for W:[κ,υ]×[κ,υ]×RPcv(R) by Michael's selection theorem (MST) there exists a continuous operator mζ:[κ,υ]×[κ,υ]R with mζWζ φ(t1)+κυW(t1,s1,ζ(s1))ds1Tζ(t1), which implies that Tζ. Therefore, Tζ is closed [Citation34].

Theorem 3.1

Assume that the following assumptions holds:

(A1)

There exists a continuous function Z:[κ,υ]×[κ,υ][0,) such that H(W(t1,s1,ζ),W(t1,s1,ς))Z(t1,s1)|ζς| for each t1,s1[κ,υ];

(A2)

supt1[t1,s1]κυ|Z(t1,s1)|ds1((β(ϱ(ζ,ς)))/(α(ζ,Tζ).α(ς,Tς))).

(A3)

T is an α-admissible w.r.t η  ζ,ςΞ α(ζ,ς)η(ζ,ς)α(Tζ,Tς)η(Tζ,Tς),

(A4)

there exists ζ0Ξ and ζ1Tζ0 such that α(ζ0,ζ1)η(ζ0,ζ1);

(A5)

For a sequence {ζq} in Ξ converging to ζΞα(ζq,ζq+1)η(ζq,ζq+1), we have α(ζq,ζ)η(ζq,ζ) qN.

Then the integral inclusion (Equation11) has a solution.

Proof.

Let ζ,ςΞ be such that ςTζ. Then we have mζ(t1,s1)Wζ(t1,s1) for t1,s1[κ,υ] such that u(t1)=φ(t1)+κυmζ(t1,s1,ζ(s1))ds1. On other side hypothesis (A1) ensures that there exists v(t1,s1)Mς(t1,s1) such that |mζ(t1,s1)v(t1,s1)|Z(t1,s1)|ζ(s1)ς(s1)|. Consider the SV operator S defined by S(t1,s1)=Mς(t1,s1){wR:|mζ(t1,s1)v(t1,s1)|Z(t1,s1)|ζ(s1)ς(s1)|}. Since the operator T is lower-semi continuous, there exists mς:[κ,υ]×[κ,υ]R such that mς(t1,s1)S(t1,s1) for each t1,s1[κ,υ], thus r(t1)=φ(t1)+κυmx(t1,s1,ζ(s1))ds1φ(t1)+κυW(t1,s1,ζ(s1))ds1,t1[κ,υ]. Now we have ϱ(u(t1),r(t1))=supt1[κ,υ]|u(t1)r(t1)|supt1[κ,υ]κυ|mζ(t1,s1,ζ(s1))myκυ(t1,s1,ς(s1))|ds1supt1[κ,υ]κυZ(t1,s1)|ζ(s1)ς(s1)|ds1supt1[κ,υ]|ζ(t1)ς(t1)|supt1[κ,υ]κυZ(t1,s1)ds1supt1[κ,υ]|ζ(t1)ς(t1)|β(ϱ(ζ,ς))α(ζ,Tζ)α(ς,Tς)=β(ϱ(ζ,ς))α(ζ,Tζ)α(ς,Tς)ϱ(ζ,ς). Then, it is clear that α(ζ,Tζ)α(ς,Tς)ϱ(u(t1),r(t1)))β(ϱ(ζ,ς))ϱ(ζ,ς), which implies that α(ζ,Tζ)α(ς,Tς)H(Tζ,Tς)β(ϱ(ζ,ς))ϱ(ζ,ς). By taking ψ(t1)=t1 from corollary 2.8 the integral inclusion (Equation11) has a solution.

4. Conclusion

We have used the concept of a couple [f h] called generalized upper-class of type-III and (α,η)β-contraction, SV fixed results are established in metric spaces. Existence theorem for Fredholm-type integral inclusion are also established. Our result generalized the result of Hussain et al. [Citation13] and Chandok et al. [Citation19] for SV mapping. Also generalized and extended the result of Liu et al. [Citation6] for SV mapping.

Acknowledgements

The authors of this paper are thankful to the editorial board and the anonymous reviewers whose comments improved the quality of the paper.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

References

  • Neumann JV. Zur theorie der gesellschaftsspiele. (German) Math Ann. 1928;100(1):295–320. doi: 10.1007/BF01448847
  • Kakutani S. A generalization of Brouwer's fixed point theorem. Duke Math J. 1941;7:457–459. doi: 10.1215/S0012-7094-41-00838-4
  • Bohnenblust HF, Karlin S. On a theorem of Ville. Contributions to the theory of games. Princeton (NJ): Princeton University Press; 1950. p. 155–160. (Annals of Mathematics Studies; 24).
  • Nadler Jr SB. Multi-valued contraction mappings. Pacific J Math. 1969;30:475–488. doi: 10.2140/pjm.1969.30.475
  • Branciari A. A fixed point theorem for mapping satisfying a general contractive condition of integral type. Int J Math Math Sci. 2002;29:531–536. doi: 10.1155/S0161171202007524
  • Liu Z, Li X, Kang SM, et al. Fixed point theorems for mappings satisfying contractive conditions of integral type and applications. Fixed Point Theory Appl. 2011;2011:64. 18 pp. doi: 10.1186/1687-1812-2011-64
  • Akram M, Zafar AA, Siddiqui AA. A general class of contractions: A- contractions. Novi Sad J Math. 2008;38:25–33.
  • Kannan R. Some results on fixed points. Bull Calcutta Math Soc. 1968;60:71–76.
  • Bianchini R. Su un problema di S. Reich riguardante la teori dei punti fissi. Boll Un Math Ital. 1972;5:103–108.
  • Reich S. Kannan's fixed point theorem. Boll Un Math Ital. 1971;4:1–11.
  • Sahaa M, Deyb D. Fixed point theorems for A-contraction mappings of integral type. J Nonlinear Sci Appl. 2012;5:84–92. doi: 10.22436/jnsa.005.02.02
  • Samet B, Vetro C, Vetro P. Fixed point theorem for α−ψ− contractive type mappings. Nonlinear Anal. 2012;75:2154–2165. doi: 10.1016/j.na.2011.10.014
  • Hussain K, Salimi A. α-admissible mappings and related fixed point theorems. J Inequal Appl. 2013;2013:114. doi: 10.1186/1029-242X-2013-114
  • Salimi P, Latif A, Hussain N. Modified α−ψ- contractive mappings with applications. Fixed Point Theory Appl. 2013;2013:151. doi: 10.1186/1687-1812-2013-151
  • Karapınar E, Samet B. Generalized α−ψ contractive type mappings and related fixed point theorems with applications. Abstr Appl Anal. 2012; 2012: ID 793486, 17 pp.
  • Asl JH, Rezapour S, Shahzad N. On fixed point of α−ψ-contractive multifunctions. Fixed Point Theory Appl. 2012;2012:212. doi: 10.1186/1687-1812-2012-212
  • Hussain N, Salimi P, Latif A. Fixed point results for single and set-valued α−η−ψ-contractive mappings. Fixed Point Theory Appl. 2013;2013:2012.
  • Radenovic S, Kadelburg Z, Jandrlic D, et al. Some results on weakly contractive maps. Bul Iran Math Soc. 2012;38:325–645.
  • Chandok S, Ansari AH, Došenović T, et al. On αβ-contractive and admissible mappings. Miskolc Math Notes. 2018;19(2):787–793. doi: 10.18514/MMN.2018.2077
  • Geraghty M. On contractive mappings. Proc Amer Math Soc. 1973;40:604–608. doi: 10.1090/S0002-9939-1973-0334176-5
  • Banach S. Sur les opeerations dans les ensembles abstraits et leur application aux equations integrales. Fund Math. 1992;3:133–181. doi: 10.4064/fm-3-1-133-181
  • Dube LS. A theorem on common fixed points of multi-valued mappings. Ann Soc Sci Bruxelles Sér I. 1975;89(4):463–468.
  • Babu GVR, Sailaja PD. A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces. Thai J Math. 2011;9:1–10.
  • Deep A, Deepmala X, Tunç C. On the existence of solutions of some non-linear functional integral equations in Banach algebra with applications. Arab J Basic Appl Sci. 2020;27(1):279–286. doi: 10.1080/25765299.2020.1796199
  • Tunç C. A remark on the qualitative conditions of nonlinear IDEs. Int J Math Comput Sci. 2020;3:905–922.
  • Tunç C, Tunç O. New qualitative criteria for solutions of Volterra integro-differential equations. Arab J Basic Appl Sci. 2018;25(3):158–165. doi: 10.1080/25765299.2018.1509554
  • Tunç C, Tunç O. New results on the stability, integrability and boundedness in Volterra integro-differential equations. Bull Comput Appl Math. 2018;6(1):41–58.
  • Tunç C, Tunç O. On behaviors of functional Volterra integro-differential equations with multiple time-lags. J Taibah Univ Sci. 2018;12(2):173–179. doi: 10.1080/16583655.2018.1451117
  • Tunç C, Tunç O. A note on the qualitative analysis of Volterra integro-differential equations. J Taibah Univ Sci. 2019;13(1):490–496. doi: 10.1080/16583655.2019.1596629
  • Shang Y. Scaled consensus of switched multi-agent systems. IMA J Math Control and Information. 2019;36:639–657. doi: 10.1093/imamci/dnx062
  • Shang Y. Continuous-time average consensus under dynamically changing topologies and multiple time-varying delays. Appl Math Comput. 2014;244:457–466.
  • Al-Sulami H, Ahmad J, Hussain N, et al. Solutions to Fredholm integral inclusions via generalized fuzzy contractions. Mathematics. 2019;7:1–9.
  • Abdullah AS, Ahmad J. Generalized fixed-point results for almost (α,Fσ)-contractions with applications to Fredholm integral inclusions. Symmetry. 2019;11:1–9.
  • Sîntămărian A. Integral inclusions of Fredholm type relative to multivalued φ-contractions. International Conference on Nonlinear Operators, Differential Equations and Applications (Cluj-Napoca, 2001). Semin. Fixed Point Theory Cluj-Napoca 3 2002. p. 361–36
  • Ali MU, Kamran T, Postolache M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal Model Control. 2017;22(1):17–30. doi: 10.15388/NA.2017.1.2
  • Shang Y, Ye Y. Fixed-time group tracking control with unknown inherent nonlinear dynamics. IEEE Access. 2017;14:1–9. doi: 10.1109/ACCESS.2017.2737633
  • Salem A, Al-Dosari A. Existence results of solution for fractional Sturm-Liouville inclusion involving composition with multi-maps. J Taibah University for Sci. 2020;14:721–733. doi: 10.1080/16583655.2020.1771834
  • Meknani B. The existence and uniqueness of integral solutions to some nonlinear reaction-diffusion system with nonlocal retarded initial conditions. J Taibah University for Sci. 2020;14:569–578. doi: 10.1080/16583655.2020.1751441