128
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Mesoscale geometric modeling of cellular materials for finite element analysis

ORCID Icon, ORCID Icon & ORCID Icon
Pages 760-769 | Published online: 21 Feb 2017
 

ABSTRACT

Mesoscale geometric modeling of cellular materials is not strictly related only to tomography reconstruction, but it can be applied also in Finite Element Analysis: (a) to better understand load distribution at the interfaces; (b) to develop and calibrate material models; (c) for sensitivity analysis to different loads or shape parameters. This paper aims to examine some of the most applied techniques for geometric modeling of cellular materials at a mesoscale level discussing their advantages and disadvantages for Finite Element Analysis. Among them, two of the most applied techniques, the Voronoi approach and the reverse engineering reconstruction, are here applied to simulate the behavior of aluminum foams under compression. These applications compared to some experimental evidences confirm the capability of mesoscale analysis, highlighting possible enhancement of the geometric modeling techniques.

GRAPHICAL ABSTRACT

View correction statement:
Erratum

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.