296
Views
1
CrossRef citations to date
0
Altmetric
Articles

Inverse problems for the impulsive Sturm–Liouville operator with jump conditions

, &
Pages 1442-1450 | Received 29 Sep 2018, Accepted 03 Dec 2018, Published online: 20 Dec 2018

ABSTRACT

The inverse problem for impulsive Sturm–Liouville operators with discontinuity conditions is considered. We have shown that all parameters used in the boundary conditions as well as q(x) can be uniquely established by a set of values of eigenfunctions at the mid-point x=π/2 and one spectrum. Moreover, we discuss Gesztesy–Simon theorem and show that if the potential function q(x) is prescribed on the interval [π/2(1α),π] for some α(0,1), then parts of a finite number of spectra suffice to determine q(x) on [0,π].

2010 MSC:

1. Introduction

Inverse problem theory is a research field that the coefficients applied in the boundary value problems are determined by some information about the spectral data. These kinds of problems can be seen in various branches of sciences like geophysics, seismic tomography, optics and graph theory (see e.g. [Citation1–4]). The more detailed studies on inverse problems for several classes of Sturm–Liouville operators can be found in some articles [Citation5–8].

We denote the boundary value problem L generated by differential equation (1) y′′+q(x)y=λr(x)y,x(0,π),(1) subject to the boundary conditions (2) U(y):=y(0)hy(0)=0,(2) (3) V(y):=y(π)+Hy(π)=0,(3) and the jump conditions (4) yπ2+0,ρ=a1yπ20,ρ,yπ2+0,ρ=a11yπ20,ρ+a2yπ20,ρ.(4) Here r(x)=α12,x<π2,α22,x>π2, in which α1<α2 has been assumed. The parameters h,H,a1,a2 are real, λ=ρ2 is a spectral parameter and the real-valued function q(x)L2(0,π).

Inverse problems for discontinuous Sturm–Liouville equations were investigated by a number of scholars [Citation9–14]. The methods of Gelfand-Levitan, spectral mappings, zeros of the eigenfunctions (nodal points) and half inverse are techniques that are used in the investigation of the inverse problem (see [Citation6,Citation7,Citation15,Citation16]). The inverse problem for interior spectral data is another method that many authors have been applied for studying the inverse problem in the next years [Citation17,Citation18]. We have to mention that two spectra of two different boundary value problems are applied to reconstruct the parameter used in the boundary value problem in the usual case in this method. The taking of one spectrum and some information of eigenfunctions at the midpoint of the interval was Mochizuki and Trooshin's initiative in solving of the inverse problem [Citation17]. This method has been applied by some researchers in the works [Citation7,Citation14,Citation19,Citation20]. As far as we know interior inverse problems for the boundary value problem (Equation1)–(Equation4) have not been studied yet. We are going to apply this method for studying the discontinuous Sturm–Liouville operators with the weight function. We also prove that parts of one spectrum can present the function q(x) on the whole interval provided that this function is given on [π/2(1α),π] for some α(0,1) which is a generalization of Gesztesy–Simon type theorem. In [Citation21] Gesztesy and Simon have showed that if q(x) is given on [0,12+α/2] for some α[0,1) a priori, then parts of one spectrum can establish q(x) on the whole interval.

In this article we investigate two inverse problems for L. The purpose of this paper is to study the inverse problem for L by Mochizuki–Trooshin and Gesztesy–Simon methods. The techniques applied in this paper are based on those expressed in [Citation17,Citation21]. We establish the coefficients of the boundary value problem L by one spectrum and a set of values of eigenfunctions in a interior point. Moreover, we investigate Gesztesy–Simon type theorem for the inverse problem of L.

2. Preliminaries

We consider the function y(x,ρ) as the solution of the equation (Equation1) under the initial conditions y(0,ρ)=1 and y(0,ρ)=h and the jump conditions (Equation4). This solution satisfies the following integral equation: (5) y(x,ρ)=A(ρ)cosρα1x+B(ρ)sinρα1x+0xsinρα1(xt)α1ρq(t)y(t,ρ)dt,x<π2,(5) (6) y(x,ρ)=A(ρ)cosργ(x)+B(ρ)sinργ(x)+0xK(x,t,ρ)ρq(t)y(t,ρ)dt,x>π2,(6) where K(x,t,ρ)=1r(t)b+sinρ(γ(x)γ(t))+bsinρ2γπ2γ(x)γ(t),0<t<π2,1r(t)sinρ(γ(x)γ(t)),π2<t<x, and γ(x)=0xr(t)dt. The following asymptotic relations as sufficiently large ρ, can be obtained for above mentioned integral equations (7) y(x,ρ)=cosρα1x+h+12α10xq(t)dtsinρα1xρ+o1ρexp(|Imρ|α1x),x<π2,(7) (8) y(x,ρ)=b+cosργ(x)+bcosρ2γπ2γ(x)+b+h+120xq(t)r(t)dt+a22α2sinργ(x)ρ+bh120xq(t)r(t)dt+1α10π/2q(t)dta22α2×sinρ2γπ2γ(x)ρ+o1ρexp(|Imρ|γ(x)),x>π2.(8) Here b±=12(a1±α1/α2a1).

We define (9) Δ(ρ):=V(y(x,ρ)).(9) as the characteristic function of L where is entire in ρ. The zeros of this function coincide with the eigenvalues of L. It is a result of (Equation3), (Equation8) and (Equation9) for |ρ|, (10) Δ(ρ)=ρα2b+sinρ(α1+α2)π2+bsinρ(α1α2)π2+Oexp(|Imρ|γ(π)),(10) and the eigenvalues ρn admit the classical asymptotic form (11) ρn=2nα1+α2+O(1).(11)

Let be δ>0 and fixed. Define Gδ:={ρC;ρρn∣≥δ,  n}. The following inequality can be deduced using the asymptotic formula for Δ(ρ), (12) Δ(ρ)C1|ρ|exp(α1+α2)|Imρ|π2,ρGδ,(12) for some positive constant C1.

In the next sections, we describe two uniqueness theorems that are the main results of this paper. For this purpose, we assume that together with L=L(q,h,H), L~=L(q~,h~,H~) be a boundary value problem of the form (Equation1)–(Equation4) with different coefficients. The symbol with tilde denotes the object in L~ that the same object is denoted with same symbol without tilde in L.

3. Mochizuki–Trooshin's method for BVP(L)

Now, we express the Mochizuki–Trooshin's theorem and demonstrate its proof. Firstly, we denote <y,z>(x):=y(x)z(x)y(x)z(x), as the Wronskian of two continuously differentiable functions y(x) and z(x) on the intervals [0,π/2) and (π/2,π].

Theorem 3.1

If for any nN, λn=λ~n,<yn,y~n>x=π/20=0, then q(x)=q~(x) a. e. on [0,π] and h=h~, H=H~.

Proof.

Our proof starts with the observation that the solution y(x,ρ) satisfies the integral representation as follows (see [Citation9,Citation12,Citation15,Citation22]): (13) y(x,ρ)=cosρα1x+0xA(x,t)cosρα1tdt,x0,π2.(13) Then we have (14) y(x,ρ)y~(x,ρ)=12cos2ρα1x+1+0xB(x,t)cos2ρα1tdt,x0,π2,(14) where A(x,t) and B(x,t) are two continuous functions which do not depend on ρ.

According to the considered assumptions for y(x,ρ), we can get (15) y′′+q(x)y=λr(x)y,y(0)=1,y(0)=h,(15) and similarly we have (16) y~′′+q(x)y~=λr(x)y~,y(0)=1,y(0)=h~.(16) After multiplying (Equation15) by y~(x,ρ) and (Equation16) by y(x,ρ), we subtract these equations from each other. Then by integrating on [0,π/2), we will have (17) 0π/2(q(x)q~(x))y(x)y~(x)dx=(y(x)y~(x)y(x)y~(x))|0π/2.(17) Therefore, (18) 0π/2(q(x)q~(x))y(x)y~(x)dx+hh~=yπ2y~π2yπ2y~π2.(18) With assumption (19) H(ρ):=0π/2(q(x)q~(x))y(x)y~(x)dx+hh~,(19) one can write (20) H(ρ)=yπ2y~π2yπ2y~π2.(20)

Taking the assumptions of the theorem, we arrive at H(ρn)=0. In the sequel, we have to prove that H(ρ)=0 for values of the non-eigenvalue ρ.

It comes from (Equation14) that for x(0,π/2) (21) |y(x,ρ)y~(x,ρ)|C2exp(|Imρ|2α1x),(21) for some positive constant C2. Thus (22) |H(ρ)|C2exp(|Imρ|α1π).(22)

Now, we define (23) φ(ρ)=H(ρ)Δ(ρ).(23) Using (Equation12), (Equation22) and Liouville's theorem [Citation23], we get that the entire function φ(ρ) is zero for all ρ and then H(ρ)=0 for all ρ.

Let us consider Q(x)=q(x)q~(x). From (Equation14) and (Equation19), we can write 0π/20Q(x)g[cos2ρα1x+1g]dx+0π/20Q(x)g[0xB(x,t)cos2ρα1tdtg]dx+hh~=0. Rewriting the above relation, we will have 0π/20Q(x)dx+0π/20cos2ρα1tg[Q(t)+tπ/20Q(x)B(x,t)dxg]dt+hh~=0. For |ρ|, we can conclude the following result from the Riemann–Lebesgue lemma (24) 0π/20cos2ρα1tg[Q(t)+tπ/20Q(x)B(x,t)dxg]dt=0,(24) (25) 0π/20Q(x)dx+hh~=0.(25) Since the function ‘cos’ is complete [Citation15], we see that (26) Q(t)+tπ/20Q(x)B(x,t)dx=0.(26) Because of the zero solution is only the solution of the above homogeneous Volterra integral equation, Q(x)=0 on [0,π/2]. This means that q(x)=q~(x) almost everywhere on [0,π/2]. Also from (Equation25), we can result that h=h~.

To prove the problem on the interval (π/2,π), it is enough to consider the supplementary problem Lˆ for x(0,π) (27) y′′+q1(x)y=λr1(x)y,q1(x)=q(πx),r1(x)=r(πx),(27) (28) U(y):=y(0)Hy(0)=0,(28) (29) V(y):=y(π)+hy(π)=0,(29) (30) yπ2+0,ρ=a11yπ20,ρ,yπ2+0,ρ=a1yπ20,ρ+a1a2yπ20,ρ.(30) Considering yˆ(x):=y(πx) as the solution of the supplementary problem Lˆ, we can write yˆn(π/20):=yn(π/2+0) and the assumptions of the theorem are true. Therefore, in the previous same manner we can give Q1(x)=Q(πx)=0 on (0,π/2) and so q(x)=q~(x) a. e. on [π/2,π] and H=H~. This completes the proof.

Remark 3.2

Let the functions y(x) and z(x) be the solutions of L. Since <y,z>|π/20=<y,z>|π/2+0, we can replace <y,z>|π/20=0 by <y,z>|π/2+0=0 in Theorem 3.1. In other words, we can give Theorem 3.1 by <y,z>|π/2+0=0 instead of <y,z>|π/20=0.

4. Gesztesy–Simon's method for BVP(L)

Finally, we state the Gesztesy–Simon's theorem and bring its proof.

Theorem 4.1

Let σ(L) be the spectrum of L. If for some α(0,1), q(x)=q~(x),xπ/2(1α),π,H=H~, and Sσ(L)σ(L~) satisfying {λS;λλ0}(1α){λσ(L);λλ0}+α2, for all sufficiently large λ0R, then q(x)=q~(x),a.e.x[0,π],h=h~.

Proof.

If we multiply (Equation1) by y~(x,ρ), and Equation (Equation1) corresponding with tilde by y(x,ρ) and subtract, then integrate on [0,π], we can infer (31) 0π(q(x)q~(x))y(x)y~(x)dx=(y(x)y~(x)y(x)y~(x))|0π/20+(y(x)y~(x)y(x)y~(x))|π/2+0π.(31) Because q(x)=q~(x), x[π/2(1α),π], we can write (32) 0π/2(1α)(q(x)q~(x))y(x)y~(x)dx=h~h+yπy~πyπy~π.(32) Assuming (33) H1(ρ):=0π/2(1α)(q(x)q~(x))y(x)y~(x)dx+hh~,(33) we will have (34) H1(ρ)=yπy~πyπy~π.(34)

According to the conditions of the theorem, we obtain H1(ρn)=0 for ρnS. Now we should prove that H1(ρ)=0 for all ρ.

From (Equation14) and (Equation33), we can give that (35) H1(ρ)C3exp(|Imρ|α1(1α)π),(35) for some positive constant C3. Moreover if λ=ib, (36) H1(ib)C3exp(Imi|b|α1(1α)π).(36)

Define (37) φ1(ρ)=H1(ρ)Δ1(ρ),(37) where (38) Δ1(ρ)=λnS1λλn.(38) This function is an entire function in ρ. For convenience, we denote (39) NΔ1(ρ0)={λS;λλ0},NΔ(ρ0)={λσ(L);λλ0}.(39) By the assumption of the theorem, we will have (40) NΔ1(ρ0)(1α)NΔ(ρ0)+α2.(40) Since the characteristic function Δ(ρ) is an entire function of order 12, we infer (41) NΔ1(ρ0)NΔ(ρ0)Cλ,(41) for some positive constant C. By standard calculations (see [Citation21,Citation24]), it is concluded that (42) ln|Δ1(ib)|=(1α)ln|Δ(ib)|+α4ln(1+b2).(42) Since σ(L) is a complete set of eigenvalues for L, we can write for sufficiently large b (43) Δ(ib)C|b|expImi|b|(α1+α2)π2.(43) Therefore, by (Equation42) and (Equation43), we have (44) Δ1(ib)C|b|expImi|b|(α1+α2)(1α)π2.(44) Taking (Equation36), (Equation37) and (Equation44), we get (45) φ1(ib)C1|b|expImi|b|(α1α2)(1α)π2.(45) By Phragmén–Lindelöf theorem, we have φ1(ρ)=0 for all ρ and then H1(ρ)=0 for all ρ.

We now apply the argument again such as Theorem 3.1, to obtain q(x)=q~(x) a. e. on [0,π/2(1α)] and h=h~. The proof is completed.

5. Examples

Example 5.1

Define r(x)=α12 for x<π/2 and r(x)=α22 for x>π/2, and then consider the boundary value problem L0, y′′+q(x)y=λr(x)y,x(0,π),U(y):=y(0)hy(0)=0,V(y):=y(π)+Hy(π)=0, with the jump conditions yπ2+0,ρ=a1yπ20,ρ,yπ2+0,ρ=a11yπ20,ρ+a2yπ20,ρ. Also consider the boundary value problem L1, y′′=λr(x)y,x(0,π),U(y):=y(0)=0,V(y):=y(π)=0, with the same jump conditions. Let λn0 and λn1 be the eigenvalues of BVP(L0) and BVP(L1), respectively. Based on Theorem 3.1, if λn0=λn1 and the Wronskian of the functions yn0(x,ρ) and yn1(x,ρ) at the point x=π/2 be equal to zero, then q(x)=0 and h=H=0.

Example 5.2

We consider the boundary value problem L0 in Example 5.1. Also consider the boundary value problem L2, y′′+q(x)y=λr(x)y,x(0,π),U(y):=y(0)=0,V(y):=y(π)+y(π)=0, with the jump conditions yπ2+0,ρ=a1yπ20,ρ,yπ2+0,ρ=a11yπ20,ρ+a2yπ20,ρ. Here q(x)=q1(x),x<π/2(1α),0,x>π/2(1α), for some α(0,1). Considering S{λn0}{λn2}, if {λS;λλ0}(1α){λ{λn0};λλ0}+α2, for all sufficiently large λ0R, by regarding to Theorem 4.1, then q1(x)=0 and h=0.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

  • Baltes HP. Inverse scattering problems in optics. Berlin: Springer; 1980. (Topics in current physics).
  • Hogben L. Spectral graph theory and inverse eigenvalue problem of a graph. Chamchuri J Math. 2009;1(1):51–72.
  • Johnson CR, Leal-Duarte A, Saiago CM. Inverse eigenvalue problems and lists of multiplicities of eigengvalues for matrices whose graph is a tree: the case of generalized stars and double generalized stars. Linear Algebra Appl. 2003;373:311–330. doi: 10.1016/S0024-3795(03)00582-2
  • Parker RL, Whaler KA. Numerical methods for establishing solutions to the inverse problem of electromagnetic induction. J Geophys Res. 1981;86(10):9574–9584. doi: 10.1029/JB086iB10p09574
  • Gelfand IM, Levitan BM. On the determination of a differential equation from its spectral function. Izv Akad Nauk SSR Ser Mat. 1951;15:309–360.
  • Koyunbakan H. The inverse nodal problem for a differential operator with an eigenvalue in the boundary condition. Appl Math Lett. 2008;21:1301–1305. doi: 10.1016/j.aml.2008.01.003
  • Yang CF, Guo YX. Determination of a differential pencil from interior spectral data. J Math Anal Appl. 2011;375:284–293. doi: 10.1016/j.jmaa.2010.09.011
  • Yurko V. Inverse spectral problems for differential pencils on the half-line with turning points. J Math Anal Appl. 2006;320:439–463. doi: 10.1016/j.jmaa.2005.06.085
  • Hald O. Discontinuous inverse eigenvalue problems. Commun Pure Appl Math. 1984;37(5):539–577. doi: 10.1002/cpa.3160370502
  • Neamaty A, Khalili Y. Determination of a differential operator with discontinuity from interior spectral data. Inverse Probl Sci Eng. 2013;22(6):1002–1008. doi: 10.1080/17415977.2013.848436
  • Shahriari M, Jodayree A, Teschi G. Uniqueness for inverse Sturm–Liouville problems with a finite number of transmission condition. J Math Anal Appl. 2012;395(1):19–29. doi: 10.1016/j.jmaa.2012.04.048
  • Wang YP, Yang CF, Huang ZY. Half inverse problem for Sturm–Liouville operators with boundary conditions dependent on the spectral parameter. Turkish J Math. 2013;37:445–454.
  • Willis C. Inverse Sturm–Liouville problems with two discontinuities. Inverse Probl. 1985;1(3):263–289. doi: 10.1088/0266-5611/1/3/010
  • Yang CF, Yang XP. An interior inverse problem for the Sturm–Liouville operator with discontinuous conditions. Appl Math Lett. 2009;22:1315–1319. doi: 10.1016/j.aml.2008.12.001
  • Freiling G, Yurko VA. Inverse Sturm–Liouville problems and their applications. New York: NOVA Scince Publ.; 2001.
  • Freiling G, Yurko V. Recovering nonselfadjoint differential pencils with nonseparated boundary conditions. Appl Anal. 2015;94(8):1649–1661. doi: 10.1080/00036811.2014.940918
  • Mochizuki K, Trooshin I. Inverse problem for interior spectral data of Sturm–Liouville operator. J Inverse Ill-Posed Probl. 2001;9:425–433. doi: 10.1515/jiip.2001.9.4.425
  • Mochizuki K, Trooshin I. Inverse problem for interior spectral data of the Dirac operator on a finite interval. Publ Res Inst Math Sci, Kyoto Univ. 2002;38(2):387–395. doi: 10.2977/prims/1145476343
  • Sat M, Panakhov ES. A uniqueness theorem for Bessel operator from interior spectral data. Abstr Appl Anal. 2013. DOI:10.1155/2013/713654.
  • Wang YP. An interior inverse problem for Sturm–Liouville operators with eigenparameter dependent boundary conditions. Tamkang J Math. 2011;42:395–403.
  • Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum. Trans Am Math Soc. 2000;352:2765–2787. doi: 10.1090/S0002-9947-99-02544-1
  • Horvath M. Inverse spectral problems and closed exponential systems. Ann Math. 2005;162:885–918. doi: 10.4007/annals.2005.162.885
  • Conway JB. Functions of one complex variable. 2nd ed. Vol. I. New York: Springer-Verlag; 1995.
  • Wang YP. Uniqueness theorems for Sturm–Liouville operators with boundary conditions polynomially dependent on the eigenparameter from spectral data. Results Math. 2013;63:1131–1144. doi: 10.1007/s00025-012-0258-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.