137
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and spectroscopic characterization of N-substituted thiosemicarbazone complexes

Pages 64-73 | Received 02 Jun 2008, Published online: 14 Feb 2009
 

Abstract

Complexation between Co(II), Ni(II), and Cu(II) with some 3,4-hexanedione bis[N-substituted thiosemicarbazones] has been investigated. The ligands release the two hydrazine hydrogens during the complex formation and act as binegative tetradentate (N2S2) except [Cu(H2Hx4M)Cl2] and [Cu(H2Hx4Et)Cl2]2H2O in which the ligands behave as neutral tetradentate. The magnetic moments and electronic spectra provide information about the geometry of the complexes, which is supported by calculating the ligand field parameters for the Co(II) complexes. Most Ni(II) complexes are diamagnetic, indicative of a square-planar structure. The bands observed in Nujol are shifted to higher energies in dimethylformamide (DMF) solution, suggesting a weak interaction with the solvent. The ESR spectra of the complexes in solid and DMF solution exhibit axial symmetric g-tensor parameters with g |>g >2.0023. The molecular parameters of [Ni(Hx4M)] have been calculated theoretically by semiempirical PM3 method. Also, the electronic transitions were calculated theoretically and found approximately similar to those recorded experimentally.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 683.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.