380
Views
69
CrossRef citations to date
0
Altmetric
Original Article

p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans

, , , , &
Pages 1469-1479 | Received 22 Feb 2016, Accepted 28 Jul 2016, Published online: 27 Sep 2016
 

Abstract

Biological barrier plays a crucial role for organisms against the possible toxicity from engineered nanomaterials (ENMs). Graphene oxide (GO) has been proven to cause potential toxicity on organisms. However, the molecular mechanisms for intestinal barrier of animals against GO toxicity are largely unclear. Using in vivo assay system of Caenorhabditis elegans, we found that mutation of genes encoding core p38 mitogen-activated protein kinase (MAPK) signaling pathway caused susceptible property to GO toxicity and enhanced translocation of GO into the body of nematodes. Genetic assays indicated that SKN-1/Nrf functioned downstream of p38 MAPK signaling pathway to regulate GO toxicity and translocation. Transcription factor of SKN-1 could regulate GO toxicity and translocation at least through function of its targeted gene of gst-4 encoding one of phase II detoxification proteins. Moreover, intestine-specific RNA interference (RNAi) assay demonstrated that the p38 MAPK-SKN-1/Nrf signaling cascade could function in intestine to regulate GO toxicity and intestinal permeability in GO exposed nematodes. Therefore, p38 MAPK-SKN-1/Nrf signaling cascade may act as an important molecular basis for intestinal barrier against GO toxicity in organisms. Exposure to GO induced significantly increased expression of genes encoding p38 MAPK-SKN-1/Nrf signaling cascade, which further implies that the identified p38 MAPK-SKN-1/Nrf signaling cascade may encode a protection mechanism for nematodes in intestine to be against GO toxicity.

Acknowledgements

This work was supported by the grant from National Natural Science Foundation of China (81172698).

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Supplementary material available online

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.