710
Views
44
CrossRef citations to date
0
Altmetric
Original Article

Nano-sized zinc oxide and silver, but not titanium dioxide, induce innate and adaptive immunity and antiviral response in differentiated THP-1 cells

, , , , , , , , , , ORCID Icon, & ORCID Icon show all
Pages 936-951 | Received 01 Jun 2017, Accepted 18 Sep 2017, Published online: 29 Sep 2017
 

Abstract

Nano-sized metal oxides are currently the most manufactured nanomaterials (NMs), and are increasingly used in consumer products. Recent exposure data reveal a genuine potential for adverse health outcomes for a vast array of NMs, however the underlying mechanisms are not fully understood. To elucidate size-related molecular effects, differentiated THP-1 cells were exposed to nano-sized materials (n-TiO2, n-ZnO and n-Ag), or their bulk-sized (b-ZnO and b-TiO2) or ionic (i-Ag) counterparts, and genome-wide gene expression changes were studied at low-toxic concentrations (<15% cytotoxicity). TiO2 materials were nontoxic in MTT assay, inducing only minor transcriptional changes. ZnO and Ag elicited dose-dependent cytotoxicity, wherein ionic and particulate effects were synergistic with respect to n-ZnO-induced cytotoxicity. In gene expression analyzes, 6 h and 24 h samples formed two separate hierarchical clusters. N-ZnO and n-Ag shared only 3.1% and 24.6% differentially expressed genes (DEGs) when compared to corresponding control. All particles, except TiO2, activated various metallothioneins. At 6 h, n-Zn, b-Zn and n-Ag induced various immunity related genes associating to pattern recognition (including toll-like receptor), macrophage maturation, inflammatory response (TNF and IL-1beta), chemotaxis (CXCL8) and leucocyte migration (CXCL2-3 and CXCL14). After 24 h exposure, especially n-Ag induced the expression of genes related to virus recognition and type I interferon responses. These results strongly suggest that in addition to ionic effects mediated by metallothioneins, n-Zn and n-Ag induce expression of genes involved in several innate and adaptive immunity associated pathways, which are known to play crucial role in immuno-regulation. This raises the concern of safe use of metal oxide and metal nanoparticle products, and their biological effects.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The study was supported by a grant from the Academy of Finland (decision 297885), Research Council for Biosciences and Environment.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.