391
Views
28
CrossRef citations to date
0
Altmetric
Article

Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: does a shape effect exist?

, , , , &
Pages 201-223 | Received 27 Jul 2017, Accepted 16 Jan 2018, Published online: 01 Feb 2018
 

Abstract

The acute toxicity of three differently shaped carbon nanomaterials (CNMs) was studied on Daphnia magna, comparing the induced effects and looking for the toxic mechanisms. We used carbon nano-powder (CNP), with almost spherical primary particle morphology, multi-walled carbon nanotubes (CNTs), tubes of multi-graphitic sheets, and cubic-shaped carbon nanoparticles (CNCs), for which no ecotoxicological data are available so far. Daphnids were exposed to six suspensions (1, 2, 5, 10, 20 and 50 mg L−1) of each CNM, and then microscopically analyzed. Ultrastructural analyses evidenced cellular uptake of nanoparticle in CNP and CNT exposed groups, but not in samples exposed to CNCs. Despite this difference, very similar effects were observed in tissues exposed to the three used CNMs: empty spaces between cells, cell detachment from the basal lamina, many lamellar bodies and autophagy vacuoles. These pathological figures were qualitatively similar among the three groups, but they differed in frequency and severity. CNCs caused the most severe effects, such as partial or complete dissolution of the brush border and thinning of the digestive epithelium. Being the cubic shape not allowed to be internalized into cells, but more effective than others in determining physical damages, we can conclude that shape is an important factor for driving nanoparticle uptake by cells and for determining the acute toxicological endpoints. Shape also plays a key role in determining the kind and the severity of pathologies, which are linked to the physical interactions of CNMs with the exposed tissues.

Acknowledgements

Authors wish to thank Dr. M. Ascagni, Università degli Studi di Milano for her help in the use of the ImageJ® software, and Prof. G. Melone, Università degli Studi di Milano, for his helpful advices.

Disclosure statement

The authors report no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.