278
Views
16
CrossRef citations to date
0
Altmetric
Article

Copper oxide nanoparticles induce collagen deposition via TGF-β1/Smad3 signaling in human airway epithelial cells

, , , , , , , & show all
Pages 239-250 | Received 27 Jun 2017, Accepted 19 Jan 2018, Published online: 31 Jan 2018
 

Abstract

Use and application of nanoparticles has increased in recent years. Copper oxide nanoparticles (CuONPs) are one of the most common types of nanoparticles, and they are mainly used as catalysts and preservatives. However, limited toxicity data are available on the toxicity of CuONPs to the respiratory system. We investigated fibrotic responses induced by CuONPs in the respiratory tract and elucidated its underlying mechanism of action in vivo and in vitro experiments. In the mouse model, CuONPs exposure markedly increased transforming growth factor-β1 (TGF-β1) and collagen I expression and Smad3 phosphorylation, combined with elevation of inflammatory mediators including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). These alterations were also observed in histological analysis of lung tissue. CuONPs markedly increased inflammatory responses and collagen deposition, accompanied by the elevation of TGF-β1 and collagen I expression in lung tissue. In addition, CuONPs-treated H292 cells showed significantly increased mRNA and protein production of TGF-β1, collagen I, IL-6, and TNF-α; this response was markedly decreased by treatment of a TGF-β1 inhibitor (SB-431542). Taken together, CuONPs induced fibrotic responses in the respiratory tract, closely related to TGF-β1/Smad3 signaling. Therefore, our results raise the necessity of further investigation for the present state of its risk by providing useful information of the toxicity of CuONPs.

Disclosure statement

There are no competing financial interests.

Additional information

Funding

This research was supported by a grant from the KRIBB Research Initiative program (KGM1221814) of the Republic of Korea.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.