130
Views
32
CrossRef citations to date
0
Altmetric
Articles

Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles

, ORCID Icon & ORCID Icon
Pages 1118-1126 | Received 24 May 2020, Accepted 17 Jul 2020, Published online: 02 Sep 2020
 

Abstract

Metal oxide nanoparticles (MO-NPs) have unique structural characteristics, exceptionally high surface area, strong mechanical stability, catalytic activities, and are biocompatible. Consequently, MO-NPs have recently attracted considerable interest in the field of imaging-guided therapeutic and biosensing applications. This study aims to develop Quantitative Structure–Activity Relationships (QSAR) for the prediction of cell viability of MO-NPs. The QSAR model based on the so-called optimal descriptors which calculated with a simplified molecular input-line entry system (SMILES). The Monte Carlo technique applied to calculate correlation weights for SMILES fragments. Factually, the optimal descriptor for SMILES is the summation of the correlation weights. The model of cytotoxicity is one variable correlation between cytotoxicity and the above optimal descriptor. The Correlation Intensity Index (CII) is a possible criterion of the predictive potential of the model. Applying the CII as a component of the target function in the Monte Carlo optimization routine, employed by the CORAL program, that is designed to find a predictive relationship between the optimal descriptor and cytotoxicity of MO-NPs, improves the statistical quality of the model. The significance of different eclectic features, in terms of whether they increase/decrease cell viability, i.e. decrease or increase cytotoxicity, is also discussed. Numerical data on 83 experimental samples of MO-NPs activity under different conditions taken from the literature are applied for the “nano-QSAR” analysis.

Disclosure statement

The authors declare no potential conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Funding

A. A. T. and A. P. T. are grateful for the contribution of the project LIFE-VERMEER contract (LIFE16 ENV/IT/000167) for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.