414
Views
14
CrossRef citations to date
0
Altmetric
Articles

Toxicity assessment of industrial engineered and airborne process-generated nanoparticles in a 3D human airway epithelial in vitro model

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 542-557 | Received 05 Nov 2020, Accepted 25 Feb 2021, Published online: 18 Mar 2021
 

Abstract

The advanced ceramic technology has been pointed out as a potentially relevant case of occupational exposure to nanoparticles (NP). Not only when nanoscale powders are being used for production, but also in the high-temperature processing of ceramic materials there is also a high potential for NP release into the workplace environment. In vitro toxicity of engineered NP (ENP) [antimony tin oxide (Sb2O3•SnO2; ATO); zirconium oxide (ZrO2)], as well as process-generated NP (PGNP), and fine particles (PGFP), was assessed in MucilAir™ cultures at air–liquid interface (ALI). Cultures were exposed during three consecutive days to varying doses of the aerosolized NP. General cytotoxicity [lactate dehydrogenase (LDH) release, WST-1 metabolization], (oxidative) DNA damage, and the levels of pro-inflammatory mediators (IL-8 and MCP-1) were assessed. Data revealed that ENP (5.56 µg ATO/cm2 and 10.98 µg ZrO2/cm2) only caused mild cytotoxicity at early timepoints (24 h), whereas cells seemed to recover quickly since no significant changes in cytotoxicity were observed at late timepoints (72 h). No meaningful effects of the ENP were observed regarding DNA damage and cytokine levels. PGFP affected cell viability at dose levels as low as ∼9 µg/cm2, which was not seen for PGNP. However, exposure to PGNP (∼4.5 µg/cm2) caused an increase in oxidative DNA damage. These results indicated that PGFP and PGNP exhibit higher toxicity potential than ENP in mass per area unit. However, the presence of a mucociliary apparatus, as it occurs in vivo as a defense mechanism, seems to considerably attenuate the observed toxic effects. Our findings highlight the potential hazard associated with exposure to incidental NP in industrial settings.

Acknowledgments

The authors would like to take this opportunity to thank all institutions involved for their support to this project. The authors kindly acknowledge TM COMAS (http://www.tmcomas.com) and Keeling & Walker (https://www.keelingwalker.co.uk) for their committed cooperation. Finally, the authors would also like to acknowledge Dr. Jüergen Schnekenburger (University of Müenster, Germany) for gamma-ray sterilization of the NP stock suspensions.

Disclosure statement

The authors declare that the original work described is approved by all co-authors, has not been previously published and is not under consideration for publication elsewhere. In addition, the authors also declare that they have no conflicts of interest concerning this article.

Additional information

Funding

The current work was carried out in the framework of the CERASAFE project (www.cerasafe.eu), with the support of ERA-NET SIINN (project id:16) and the Portuguese Foundation for Science and Technology (FCT; SIINN/0004/2014). This work was also supported by the NanoBioBarriers project (PTDC/MED‐TOX/31162/2017), co-financed by the Operational Program for Competitiveness and Internationalization (POCI) through European Regional Development Funds (FEDER/FNR) and FCT; Spanish Ministry of Science and Innovation (projects PCIN-2015-173-C02-01 and CEX2018-000794-S-Severo Ochoa) and by the Romanian National Authority for Scientific Research and Innovation (CCCDI-UEFISCDI, project number 29/2016 within PNCDI III). Thanks are also due to FCT/MCTES for the financial support to EPIUnit (UIDB/04750/2020). M.J. Bessa (SFRH/BD/120646/2016) and F. Brandão (SFRH/BD/101060/2014) are recipients of FCT PhD scholarships under the framework of Human Capital Operating Program (POCH) and European Union funding.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.