344
Views
4
CrossRef citations to date
0
Altmetric
Articles

Bioinspired silk fibroin nano-delivery systems protect against 5-FU induced gastrointestinal mucositis in a mouse model and display antitumor effects on HT-29 colorectal cancer cells in vitro

, , ORCID Icon, , , , , , , , , ORCID Icon & show all
Pages 973-994 | Received 25 Mar 2021, Accepted 10 Jun 2021, Published online: 02 Jul 2021
 

Abstract

Colorectal cancer (CRC), is the second cause of cancer-related deaths worldwide is one of the most prevalent types of cancers. Conventional treatment continues to rely on surgery, chemotherapy, and radiotherapy, but for advanced cases, adjuvant chemotherapy remains the main approach for improving surgical outcomes and lower the disease recurrence probability. Chemotherapy-induced gastrointestinal (GI) toxicity is the main dose-limiting factor for many chemotherapeutic regimens, including 5-FU, and one of the biggest oncological challenges. Up to 40% of the patients receiving 5-FU get mucositis, 10–15% of which develop severe symptoms. In this context, our study aimed to develop a bioinspired nanosized drug delivery system as a strategy to reduce 5-FU associated side effects, such as GI mucositis. To this end, SF-based nanoparticles were prepared and characterized in terms of size and morphology, as well as in terms of in vitro antitumoral activity on a biomimetic colorectal cancer model by investigation of apoptosis, DNA fragmentation, and release of reactive oxygen species. Additionally, the capacity of the SF-based nanocarriers to offer intestinal protection against 5-FU-induced GI mucositis was evaluated in vivo using a mouse model that mimics the chemotherapy-associated gut mucositis occurring in colorectal cancer. Our studies show that silk fibroin nanoparticles efficiently deliver 5-FU to tumor cells in vitro while protecting against drug-induced GI mucositis in a mouse model.

Disclosure statement

The authors report no conflict of interest.

Additional information

Funding

This work was supported by a grant from the Romanian Ministry of Research and Innovation, CCCDI – UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0407/39PCCDI-2018, within PNCDI III. DLS was possible due to European Regional Development Fund through Competitiveness Operational Program 2014–2020, Priority axis 1, Project No. P_36_611, MySMIS code 107066, Innovative Technologies for Materials Quality Assurance in Health, Energy and Environmental – Center for Innovative Manufacturing Solutions of Smart Biomaterials and Biomedical Surfaces – INOVABIOMED.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.