239
Views
1
CrossRef citations to date
0
Altmetric
Articles

Quantitative adverse outcome pathway (qAOP) using bayesian network model on comparative toxicity of multi-walled carbon nanotubes (MWCNTs): safe-by-design approach

&
Pages 679-694 | Received 22 Jun 2022, Accepted 24 Oct 2022, Published online: 10 Nov 2022
 

Abstract

While the various physicochemical properties of engineered nanomaterials influence their toxicities, their understanding is still incomplete. A predictive framework is required to develop safe nanomaterials, and a Bayesian network (BN) model based on adverse outcome pathway (AOP) can be utilized for this purpose. In this study, to explore the applicability of the AOP-based BN model in the development of safe nanomaterials, a comparative study was conducted on the change in the probability of toxicity pathways in response to changes in the dimensions and surface functionalization of multi-walled carbon nanotubes (MWCNTs). Based on the results of our previous study, we developed an AOP leading to cell death, and the experimental results were collected in human liver cells (HepG2) and bronchial epithelium cells (Beas-2B). The BN model was trained on these data to identify probabilistic causal relationships between key events. The results indicated that dimensions were the main influencing factor for lung cells, whereas -OH or -COOH surface functionalization and aspect ratio were the main influencing factors for liver cells. Endoplasmic reticulum stress was found to be a more sensitive pathway for dimensional changes, and oxidative stress was a more sensitive pathway for surface functionalization. Overall, our results suggest that the AOP-based BN model can be used to provide a scientific basis for the development of safe nanomaterials.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Korean Ministry of Environment under the ‘Environmental Health R&D Program’ (2021003310005).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.