507
Views
7
CrossRef citations to date
0
Altmetric
Articles

Ultimate structural and fatigue damage loads of a spar-type floating wind turbine

ORCID Icon, , &
Pages 582-588 | Received 01 Mar 2018, Accepted 02 Oct 2018, Published online: 18 Oct 2018
 

ABSTRACT

This study addresses the ultimate structural and fatigue damage loads of a spar-type offshore floating wind turbine under joint excitations of wind and wave. Aero-hydro-servo-elastic coupled analysis is performed in time-domain to capture the dynamic responses of the floating wind turbine. Based on the mean up-crossing rate method, the short-term ultimate structural load is estimated. The cumulative fatigue damage load is computed with the S-N method. It is shown that the low-level ultimate load is mostly influenced by wind forces whereas the high-level ultimate load is more closely related to wave forces. The wave excitations dominate the fatigue damage at tower top and tower base, whereas the mooring line fatigue damage is more sensitive to the wind forces.

Additional information

Funding

This work was supported by China Scholarship Council [grant number 201506230127].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 293.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.