222
Views
6
CrossRef citations to date
0
Altmetric
Articles

Representation of shape mediated by environmental stimuli in Physarum polycephalum and a multi-agent model

, &
Pages 166-184 | Received 16 Dec 2014, Accepted 20 Apr 2015, Published online: 28 May 2015
 

Abstract

The slime mould Physarum polycephalum is known to construct protoplasmic transport networks which approximate proximity graphs by foraging for nutrients during its plasmodial life cycle stage. In these networks, nodes are represented by nutrients and edges are represented by protoplasmic tubes. These networks have been shown to be efficient in terms of length and resilience of the overall network to random damage. However, relatively little research has been performed in the potential for Physarum transport networks to approximate the overall shape of a data-set. In this paper we distinguish between connectivity and shape of a planar point data-set and demonstrate, using scoping experiments with plasmodia of P. polycephalum and a multi-agent model of the organism, how we can generate representations of the external and internal shapes of a set of points. As with proximity graphs formed by P. polycephalum, the behaviour of the plasmodium (real and model) is mediated by environmental stimuli. We further explore potential morphological computation approaches with the multi-agent model, presenting methods which approximate the Convex Hull and the Concave Hull. We demonstrate how a growth parameter in the model can be used to transition between Convex and Concave Hulls. These results suggest novel mechanisms of morphological computation mediated by environmental stimuli.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This paper was supported by the EU research project ‘Physarum Chip: Growing Computers from Slime Mould’ [grant number FP7 ICT Ref 316366].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 763.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.