74
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thermodynamic cost of edge detection in artificial neural network (ANN)-based processors

ORCID Icon & ORCID Icon
Pages 262-274 | Received 28 Aug 2020, Accepted 11 Oct 2020, Published online: 29 Oct 2020
 

ABSTRACT

Architecture-based heat dissipation analyses allow us to reveal fundamental sources of inefficiency in a given processor and thereby provide us with road-maps to design less dissipative computing schemes independent of technology-base used to implement them. In this work, we study architectural-level contributions to energy dissipation in an Artificial Neural Network (ANN)-based processor that is trained to perform edge-detection task. We compare the training and information processing cost of ANN to that of conventional architectures and algorithms using 64-pixel binary image. Our results reveal the inherent efficiency advantages of an ANN network trained for specific tasks over general-purpose processors based on von Neumann architecture. We also compare the proposed performance improvements to that of Cellular Array Processors (CAPs) and illustrate the reduction in dissipation for special purpose processors. Lastly, we calculate the change in dissipation as a result of input data structure and show the effect of randomness on energetic cost of information processing. The results we obtained provide a basis for comparison for task-based fundamental energy efficiency analyses for a range of processors and therefore contribute to the study of architecture-level descriptions of processors and thermodynamic cost calculations based on physics of computation.

GRAPHICAL ABSTRACT

Acknowledgments

This research is supported in part by Boğaziçi University BAP Start-up Grant No: 11540. The authors would like to thank Dr. Natesh Ganesh and Professor Neal G. Anderson for their insightful comments on the manuscript. Dr. İlke Ercan would also like to acknowledge generous resources provided by the University College Roosevelt, an international honours college of Utrecht University.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 763.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.