270
Views
6
CrossRef citations to date
0
Altmetric
Articles

Determination and prediction of the digestible and metabolisable energy content of barley for growing pigs based on chemical composition

, , , , , & show all
Pages 108-119 | Received 26 Sep 2016, Accepted 06 Dec 2016, Published online: 15 Feb 2017
 

ABSTRACT

This experiment was conducted to define the sources of variation determining the energy content of barley and to develop a practical method to predict the digestible energy (DE) and metabolisable energy (ME) content of individual barley samples. The 19 barley samples used in this study were diverse varieties grown in different regions. The feeding experiment used 57 barrows (initial body weight 31.5 ± 3.2 kg) and was conducted over two consecutive periods (n = 6 per treatment) using a completely randomised design. During each period, the pigs were placed in metabolic crates for a 5-d total collection of faeces and urine following a 10-d adaptation to the diets. Among the barley samples, on dry matter (DM) basis the levels of neutral detergent fibre, acid detergent fibre (ADF), crude protein and starch ranged from 16.1% to 38.9%, 3.9% to 9.6%, 10.1% to 16.8% and 43.5% to 57.9%, respectively. The mean determined DE and ME contents amounted to 14.7 and 14.4 MJ/kg DM and varied among the samples by 1.85 MJ (13.6%) and 1.78 MJ (13.3%), respectively. The ADF fraction accounted for 73% and 76% of the total variation in the DE and ME content, respectively. It revealed that for prediction of the DE and ME contents in barley, equations had the best fit when the analysed contents of ADF, neutral detergent fibre and gross energy were used for calculation (R2 = 0.92). On the basis of the developed equations, the DE and ME contents of barley of different origin can be predicted with an acceptable accuracy when used as feed for growing pigs.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors express appreciation for the support from the National Natural Science Foundation of China [No. 31372316].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 951.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.