338
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of orange fibre on nutrient digestibility and fermentation products in faeces of cats fed kibble diets

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 61-73 | Received 11 Nov 2021, Accepted 07 Feb 2022, Published online: 28 Mar 2022
 

ABSTRACT

The aim of the present study was to compare orange fibre, beet pulp and inulin as fibre sources for cats. A control diet (CON) was formulated without inclusion of a fibre source. Further experimental diets were also based on diet CON but were supplemented with 1% orange fibre (diet 1%OF); 3% orange fibre (diet 3%OF); 3% beet pulp (diet 3%BP) or 1% inulin (diet 1%IN). Forty cats were used in a randomised block design (4 blocks of 10 cats, 2 animals per food in each block, totalling 8 animals per treatment). Each block lasted 20 d, with 10 d of adaptation, 10 d of faecal collection for digestibility as well as evaluation of pH-value and fermentation products. The digestibility of dry matter, organic matter, crude protein, ether extract, starch and gross energy did not vary between diets. In diet 1%OF, dietary fibre revealed a greater digestibility than in diet CON (p < 0.05). Faecal production was higher in cats fed diets 3%OF and 3%BP than in those fed diet 1%IN (p < 0.05). Faecal concentrations of acetate and total short-chain fatty acids were higher for cats fed diet 3%BP than for those fed diets 1%IN and CON (p < 0.05), while diets 1%OF and 3%OF showed intermediate results. Faecal propionate concentration was higher for cats fed diet 3%BP, intermediate for diets 1%OF, 3%OF and 1%IN and lower for animals fed diet CON (p < 0.05). Compared with diets CON and 1%IN, the faecal concentration of tyramine was higher for cats fed diet 3%OF (p < 0.05). Orange fibre was fermentable; up to 3% inclusion it did not interfere with the digestibility of nutrients, faecal score and faecal moisture content, and promoted the formation of short-chain fatty acids and tyramine by the intestinal microbiota, with possible effects on intestinal function.

Acknowledgments

This study was financed in part by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” - Brazil (CAPES) - Finance Code 001. The authors would like to thank Citrosuco/BR for the financial support of the study, Affinity Petcare (Campinas, Brazil) and Manfrim industrial (Santa Cruz do Rio Pardo, Brazil) for the financial support to Research Laboratory in Nutrition and Nutritional Diseases of Dogs and Cats “Prof. Dr. Flávio Prada” and Manzoni Industrial Ltda. (Campinas, Brazil) for the donation of the extruder used in the study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Citrosuco S/A [3429]; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [001].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 951.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.