237
Views
18
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Ciliary-propelling mechanism, effect of temperature and viscosity on swimming speed, and adaptive significance of ‘jumping’ in the ciliate Mesodinium rubrum

&
Pages 585-595 | Published online: 29 Oct 2009
 

Abstract

Beating cilia are important organelles, not only for water pumping in many active filter-feeding organisms, but also for the swimming activity of ciliates and other aquatic organisms that use cilia for propulsion. The present study concerns the effect of temperature-dependent viscosity of the ambient seawater on the swimming velocity of the ‘jumping’ ciliate Mesodinium rubrum in which the propulsion is due to the active beat of an equatorial ring of swim-cilia. This was done by using video-microscope recordings of ciliates at different temperatures and, at constant temperature, by addition of a high molecular weight polymer (PVP) to manipulate the viscosity. Both ‘large’ (45 µm long) and ‘small’ (22 µm) M. rubrum were studied in order to characterize the jumping behaviour and swimming mechanism in more details. For large M. rubrum, the swimming velocity decreases with decreasing temperature, hence increasing viscosity, from 9.6±0.3 mm s−1 at 21°C to 5.2±0.7 mm s−1 at 9.8°C for seawater, and down to 3.7±0.5 mm s−1 at a temperature equivalent Te=5.8°C for PVP-manipulated viscosity, and further, the swimming velocity was found to decrease with increasing viscosity according to the power law V s≈νn , n≈ 1.93. For small M. rubrum, swimming velocity decreased from 6.1±1.3 mm s−1 at 21.1°C to 3.8±0.3 mm s−1 at 9.5°C, while the power-law exponent was n≈ 1.4 and 3 for changing temperature and temperature equivalent, respectively, but with n≈ 1.96 for all data taken together. The results, supplemented with an analysis of a hydrodynamic model for self-propagation of an idealized micro-organism, support the hypothesis that the response is mainly physical/mechanical rather than biological. Since the jump-speed of M. rubrum is nearly the same for all tracks of varying jump-lengths at a given viscosity, this indicates that the swim-cilia may frequently have more than one beat cycle per jump, and possibly at times less than one beat cycle. The jump-length to jump-time for large ciliates is larger (≈ 0.5 mm to 101 ms) than for small ciliates (≈ 0.15 mm to 30 ms). However, swim-velocities – when reaching the near-constant level – show less difference, being about 5 mm s−1 on the average for the temperature range studied. The beat frequency of swim-cilia in jumping ciliates is estimated to be about 60 Hz, which is high but likely necessary for attaining the high swimming velocities observed.

Published in collaboration with the University of Bergen and the Institute of Marine Research, Norway, and the Marine Biological Laboratory, University of Copenhagen, Denmark

Published in collaboration with the University of Bergen and the Institute of Marine Research, Norway, and the Marine Biological Laboratory, University of Copenhagen, Denmark

Acknowledgements

Thanks are due to Karen Riisgaard for skilful technical assistance and for supplying the Mesodinium rubrum. H.U.R. was supported by a grant from the Danish Agency for Science and Technology and Innovation (Grant No. 272-06-0478).

Notes

Published in collaboration with the University of Bergen and the Institute of Marine Research, Norway, and the Marine Biological Laboratory, University of Copenhagen, Denmark

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 158.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.