120
Views
0
CrossRef citations to date
0
Altmetric
ARTICLE

Developing enhanced, lignocellulosic fibre reinforcement for low-cost, cementitious, construction materials

Pages 30-41 | Published online: 28 Feb 2012
 

Abstract

The research reported in this article is based on an NSF (National Science Foundation) project aimed at advancing the structural use of earth-based technologies through addressing durability concerns within the hot and humid context. This article focuses on one aspect of the research directed at developing an enhanced, lignocellulosic fibre-reinforced, cementitious composite. In this research, soil–cement masonry is the cementitious matrix and coconut fibre (coir) the natural fibre. In the case study context, this cementitious composite is highly susceptible to physical damage due to intense rainfall and chemical deterioration that can be linked to the hydration of cement. The use of natural fibres, such as coir, compounds this problem. For the research to adequately address durability concern problems, accurate empirical data quantifying the damage to the natural fibre-reinforced cementitious composite are required. The discussion identifies the key knowledge gaps. It also describes the methodology adopted to produce and test the cementitious bricks investigated in the research. In addition to summarizing the main physical and mechanical properties, the findings presented in this article also (i) establish the bricks' resistance to wind-driven rain erosion and (ii) characterize the performance of the units on the basis of hydration-triggered chemical deterioration that can be expected in cement-stabilized earthen bricks. The article ends with a discussion of the key findings and a description of further research activities.

ACKNOWLEDGEMENTS

The research reported in this article was supported by a grant from the National Science Foundation (NSF), CMMI – SMM Award No. 0844612.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 336.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.