571
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering

, , , , &
Pages 193-197 | Published online: 22 Dec 2008
 

Abstract

Bone tissue engineering scaffolds have two challenging functional tasks to play; to be bioactive by encouraging cell proliferation and differentiation, and to provide suitable mechanical stability upon implantation. Composites of biopolymers and bioceramics unite the advantages of both materials, resulting in better processability, enhanced mechanical properties through matrix reinforcement and osteoinductivity. Novel composite blends of poly(L-lactide-co-D,L-lactide)/tricalcium phosphate (PLDLLA/TCP) were fabricated into scaffolds by an extrusion deposition technique customised from standard rapid prototyping technology. PLDLLA/TCP composite material blends of various compositions were prepared and analysed for their mechanical properties. PLDLLA/TCP (10%) was optimised and fabricated into scaffolds. Compressive mechanical properties for the composite scaffolds were measured. In vitro studies were conducted using porcine bone-marrow stromal cells (BMSCs). Cell-scaffold constructs were induced using osteogenic induction factors for up to 8 weeks. Cell proliferation, viability and differentiation capabilities were assayed using phase-contrast light microscopy, scanning electron microscopy, DNA quantification (Pico Green), Alamar Blue metabolic assay; FDA/PI fluorescent assay and western blot analysis for osteopontin. Microscopy observations showed BMSCs possessed high proliferative capabilities and demonstrated bridging across the pores of the scaffolds. FDA/PI staining as well as Alamar Blue assay showed high viability of BMSCs cultured on the composite scaffolds. Cell numbers, based on DNA quantitation, were observed to increase continuously up to the eighth week of study. Western blot analysis showed increased osteopontin synthesis on the scaffolds compared to tissue culture plastic. Based on our results the PLDLLA/TCP scaffolds exhibited good potential and biocompatibility for bone tissue engineering applications.

Acknowledgements

This work is part of a Singapore-Poland initiative supported by A*Star under the project entitled ‘A composite material technology platform for bone engineering’.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.