221
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Designer ‘blueprint’ for vascular trees: morphology evolution of vascular tissue constructs

, , , , , , , , & show all
Pages 63-74 | Received 26 Nov 2008, Published online: 08 Jul 2009
 

Abstract

Organ printing is a variant of the biomedical application of rapid prototyping technology or layer-by-layer additive biofabrication of 3D tissue and organ constructs using self-assembled tissue spheroids as building blocks. Bioengineering of perfusable intraorgan branched vascular trees incorporated into 3D tissue constructs is essential for the survival of bioprinted thick 3D tissues and organs. In order to design the optimal ‘blueprint’ for digital bioprinting of intraorgan branched vascular trees, the coefficients of tissue retraction associated with post-printing vascular tissue spheroid fusion and remodelling must be determined and incorporated into the original CAD. Using living tissue spheroids assembled into ring-like and tube-like vascular tissue constructs, the coefficient of tissue retraction has been experimentally evaluated. It has been shown that the internal diameter of ring-like and the height of tubular-like tissue constructs are significantly reduced during tissue spheroid fusion. During the tissue fusion process, the individual tissue spheroids also change their shape from ball-like to a conus-like form. A simple formula for the calculation of the necessary number of tissue spheroids for biofabrication of ring-like structures of desirable diameter has been deduced. These data provide sufficient information to design optimal CAD for bioprinted branched vascular trees of desirable final geometry and size.

Acknowledgements

Work was funded by NSF FIBR and MUSC Bioprinting Research Center grants, P20-RR1-16434 from the NCRR and P20-RR1-6461 from the SC IDeA Network of Biomedical Research Excellence. Author thanks Dr. Brooke Damon for technical help.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.