674
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion. Part 1: Influence of the degradation environment

, , , , , & show all
Pages 65-73 | Published online: 16 Jun 2010
 

Abstract

One of the most promising approaches in tissue engineering (TE) comprises the development of 3D porous scaffolds which are able to promote tissue regeneration. Biocompatible and biodegradable poly(ϵ-caprolactone) (PCL) structures are increasingly used as temporary extra-cellular matrices for bone tissue engineering. To ensure an appropriate bone restoration over the long term, the selected material must have a degradation rate that match the in-growth of new bone. The in vivo process, by which the scaffold degrades and is resorbed transferring the load and function back to the host tissue, is complex. Consequently, an appropriate preliminary in vitro study is required. A novel extrusion-based technology called BioExtruder was used to produce PCL porous scaffolds made with layers of directionally aligned microfilaments. The in vitro degradation behaviour in both simulated body fluid (SBF) and phosphate buffer solution (PBS) were investigated over 6 months. The characterization of the degradation behaviour of the structures was performed at specific times by evaluating changes in the average molecular weight, the weight loss and its thermal properties. Morphological and surface chemical analyses were also performed using a Scanning Electron Microscopy (SEM) and an X-ray Photoelectron Spectroscopy (XPS), respectively.

5. Acknowledgements

This work was performed within the framework of the European Network of Excellence “EXPERTISSUES” (Project NMP3-CT-2004-500283), with the partial financial support by Project PRIN – 2006 – prot. 2006038548. The authors wish to thank Mr Piero Narducci for recording SEM images of scaffolds.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.