295
Views
23
CrossRef citations to date
0
Altmetric
Articles

Dark–bright optical solitary waves and modulation instability analysis with (2 + 1)-dimensional cubic-quintic nonlinear Schrödinger equation

, , &
Pages 393-402 | Received 04 Dec 2017, Accepted 07 Feb 2018, Published online: 19 Feb 2018
 

ABSTRACT

This paper addresses the (2+1)-dimensional cubic-quintic nonlinear Schrödinger equation (CQNLS) that serves as the model to study the light propagation through nonlinear optical media and non-Kerr crystals. A dark–bright optical solitary wave solution of this equation is retrieved by adopting the complex envelope function ansatz. This type of solitary wave describes the properties of bright and dark optical solitary waves in the same expression. The integration naturally lead to a constraint condition placed on the solitary wave parameters which must hold for the solitary waves to exist. Additionally, the modulation instability (MI) analysis of the model is studied based on the standard linear stability analysis and the MI gain spectrum is got. Numerical simulation and physical interpretations of the obtained results are demonstrated. It is hoped that the results reported in this paper can enrich the nonlinear dynamical behaviors of the CQNLS.

Notes

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 552.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.