183
Views
5
CrossRef citations to date
0
Altmetric
Articles

LIDAR systems operating in a non-Kolmogorov turbulent atmosphere

, &
Pages 743-758 | Received 27 Nov 2017, Accepted 23 Apr 2018, Published online: 08 May 2018
 

ABSTRACT

It is well known that in free atmosphere the Kolmogorov power spectrum of the refractive index might not properly describe the actual turbulence behavior. In this paper, we use general non-Kolmogorov power spectrum for theoretical investigation of laser beam propagation in the double-passage problem: transmitter–target–receiver. The major application of our work is the Light Detection And Ranging (LIDAR) system operating at high altitudes, where non-Kolmogorov turbulence may be present. On confining ourselves to the weak turbulence regime, we show that the long-term average beam intensity profile, the long-term beam spread and the scintillation index are substantially affected by the non-Kolmogorov turbulent channels. Our analysis is valid for both bi-static and mono-static configurations, the latter leading to the enhanced backscattering effects.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors’ research is supported by the US AFOSR [grant number FA9550-12-1-0449].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 552.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.