85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation and regression analysis of MHD dissipative and radiative flow of a Casson nanofluid with Hall effects

, &
Received 16 Mar 2022, Accepted 28 Nov 2022, Published online: 27 Jan 2023
 

Abstract

The magnetohydrodynamic (MHD) flow of Casson nanofluid has several applications in engineering and medical processes. The present research work is performed to examine the unsteady viscous dissipative and radiative flow of a Casson nanofluid over a stretching sheet under the influence of a transverse magnetic field with a view to highlight the impact of Hall current. The mathematical model comprising of nonlinear coupled PDE is transformed into a set of coupled ODEs using appropriate similarity transformation. The reduced mathematical model in a similar form is then solved by adopting the successive linearization method (SLM). The residual analysis is used to validate the solutions. A parametric study is performed to inquire about the impacts of Hall current, nonlinear thermal radiation, viscous dissipation, and other pertinent flow parameters such as temperature ratio, Brownian movement, thermophoresis on the nanofluid velocities, temperature, and concentration. The effects of pertinent flow parameters are also examined on the skin-friction coefficients, Nusselt number, and Sherwood number. A quadratic regression analysis is presented to estimate the skin-friction coefficient and Nusselt number for different values of effecting parameters. Results reveal that the increasing values of Casson parameter decrease the fluid velocity and temperature, whereas a converse trend is detected in concentration profile, rate of heat transfer and mass transfer.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

One of the authors, R. Nandkeolyar is thankful to the Science & Engineering Research Board, Department of Science & Technology, Government of India for providing the financial assistance vide file No. ECR/2017/000118/PMS.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 552.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.