446
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Driving behavior classification at signalized intersections using vehicle kinematics: Application of unsupervised machine learning

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 34-44 | Received 03 Apr 2022, Accepted 15 Jul 2022, Published online: 25 Jul 2022
 

Abstract

Driving behavior is considered as a unique driving habit of each driver and has a significant impact on road safety. This study proposed a novel data-driven Machine Learning framework that can classify driving behavior at signalized intersections considering two different signal conditions. To the best of our knowledge, this is the first study that investigates driving behavior at signalized intersections with two different conditions that are mostly used in practice, i.e., the control setting with the signal order of green-yellow-red and a flashing green setting with the signal order of green-flashing green-yellow-red. A driving simulator dataset collected from participants at Qatar University’s Qatar Transportation and Traffic Safety Center, driving through multiple signalized intersections, was used. The proposed framework extracts volatility measures from vehicle kinematic parameters including longitudinal speed and acceleration. K-means clustering algorithm with elbow method was used as an unsupervised machine learning to cluster driving behavior into three classes (i.e., conservative, normal, and aggressive) and investigate the impact of signal conditions. The framework confirmed that in general driving behavior at a signalized intersection reflects drivers’ habits and personality rather than the signal condition, still, it manifests the intersection nature that usually requires drivers to be more vigilant and cautious. Nonetheless, the results suggested that flashing green condition could make drivers more conservative, which could be due to the limited capabilities of human to estimate the remaining distance and the prolonged duration of the additional flashing green interval. The proposed framework and findings of the study were promising that can be used for clustering drivers into different styles for different conditions and might be beneficial for policymakers, researchers, and engineers.

Acknowledgements

This publication was made possible by the NPRP award [NPRP 9- 360-2-150] from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author[s].

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.