173
Views
6
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

An acute bout of high-intensity intermittent swimming induces glycogen supercompensation in rat skeletal muscle

, &
Pages 413-420 | Published online: 17 Nov 2008
 

Abstract

High-intensity intermittent exercise substantially increases muscle glucose transport, which is thought to be the rate-limiting step for glycogen synthesis. In the present study, we compared muscle glycogen supercompensation after high-intensity intermittent exercise with that observed after low-intensity continuous exercise in rats. Four- to five-week-old male Sprague-Dawley rats performed either low-intensity swimming (240 min of swimming exercise with a weight equivalent to 1% of their body mass; LOW) or high-intensity swimming (twenty 30-s swimming bouts with 30 s rest between bouts with a weight equivalent to 16% of their body mass; HIGH) to deplete muscle glycogen. After the glycogen-depleting exercise, rats were given a rodent chow diet plus 5% glucose solution for 6 h or 24 h. Immediately after the two types of exercise, glycogen concentration in rat epitrochlearis muscle was similarly depleted. After the 6-h and 24-h recovery periods, muscle glycogen concentrations in both the HIGH and LOW groups were restored well above the normally fed state. Furthermore, muscle glycogen accumulation in the HIGH group for the 6-h and 24-h recovery periods was not significantly different from that observed in the LOW group. The high-intensity intermittent swimming exercise also induced muscle glycogen supercompensation in well-trained rats that had performed 7 days of endurance swimming training (6 h per day). Our results indicate that high-intensity intermittent exercise as well as low-intensity continuous exercise could induce glycogen supercompensation in rat skeletal muscle.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.